
AMLE Summer School 2023

AMLE Summer School 2023
September 20, 2023

Task-based Parallel Programming Models: The
Convergence of High-Performance and Edge

Compu=ng Domains

Eduardo Quiñones
{eduardo.quinones@bsc.es}

AMLE Summer School 2023

A bit of me…

• PhD on Computer Science at Technical University
of Catalonia (UPC) in 2009

• Team Leader of the Predictable Parallel CompuAng
Research Group at Barcelona SupercompuAng
Center
– Job posi(ons available!! ;)

• Founder and CTO of TalpTech, a Startup company
that provides edge compuAng soluAons to
precision agriculture

2

AMLE Summer School 2023

Agenda

1. The need of parallel programming models: OpenMP

2. Modelling a real-Ame system with OpenMP

3. Main Factors ImpacAng Parallel ExecuAon

4. RunAme opAmizacion for real-Ame systems

3

AMLE Summer School 2023

Irrup%on of mul%-cores

Heterogeneous and
Parallel compu2ng
becomes key to cope
with performance
requirements

Heterogeneous and Parallel Compu2ng

4

Network of HW/SW components
that must operate correctly in

response to its inputs from both
func-onal and non-func-onal

perspec9ves

Massively parallel systems that
operate as fast as possible

Genomics Weather Big data

Avionics Space Automo7ve

AMLE Summer School 2023

Heterogeneous and Parallel Computing

Host-centric paradigm: The parallel computa.on is orchestrated by
the general-purpose mul.-core

5

Mul0-core
(Host)

GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW
func

HW
func

HW
func

Interface with the
(physical) world

Addressable memory by the
different compu<ng elements

Reconfigurable logic
including dynamic par<al
reconfigura<on

Network on Chip (NoC)

Op<mised HW func<ons

Accelerator for optimized
graphical processing, linear

algebra and deep learning

General purpose mul<-core for
control-flow applica<ons and

parallel orchestra<on

AMLE Summer School 2023

The example of the collision detec8on

6

Used in Adavanced Driving Assistant System (ADAS) and
autonomous vehicles to iden:fy objects (percep:on) and
detect poten:al collisions

Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW
func

HW
func

HW
func

Mul5-core (Host)GPU
(Accelerator)

Peripherals HW
func

AMLE Summer School 2023

Heterogeneous and Parallel Compu2ng

7

Performance: complex computa,ons at high speed

Real-/me: end-to-end response ,me within budget

Power/Thermal: energy/temperature within budget

Safety: guarantee correctness and integrity of opera,on

Security: prevent external elements from affec,ng
correctness and integrity

AMLE Summer School 2023

The SW Produc7vity Gap

8

Source: ITRS & Hardware-dependent Software, Ecker et al., Springer

1. Efficiently exploit parallelism and achieve the required performance
2. Reason about the func(onal and non-func(onal correctness

Like a duck to water!

Parallel programming models are key!

AMLE Summer School 2023

The Importance of Compute Con7nuum

• Set of compu(ng resources to handle the complete lifecycle chain of data
collected across highly distributed and heterogeneous sources
– Edge Compu<ng to reduce data transmission latencies, minimize security risks and

provide data privacy, and reduce energy consump0on
– HPC to support massive parallel processing capabili0es and accelera0on features
– Cloud Compu<ng to provide highly scalable storage systems and on-demand analy0cs

technologies

9www.extract-project.eu

Da
ta

In

fra
st

ru
ct

ur
e

Object
Storage

Data Catalog Semantic

Data Staging

Da
ta

 M
in

in
g

Fr
am

ew
or

k

Machine Learning

Workflow Description
Da

ta
-d

riv
en

Or

ch
es

tra
to

r

Big Data

Scheduling

Deployment Monitoring

Edge
Frameworks

Cloud
Frameworks

HPC
Frameworks

Interoperability Abstraction Layer

Co
m

pu
te

Co

nt
in

uu
m

Data
security

Cyber
security

Full-stack Security LayerML
model

security

Parallel Programming
Model Support

AMLE Summer School 2023

The Importance of Compute Con7nuum

• Set of compu(ng resources to handle the complete lifecycle chain of data
collected across highly distributed and heterogeneous sources
– Edge Compu<ng to reduce data transmission latencies, minimize security risks and

provide data privacy, and reduce energy consump0on
– HPC to support massive parallel processing capabili0es and accelera0on features
– Cloud Compu<ng to provide highly scalable storage systems and on-demand analy0cs

technologies

10

Beamform
Data

Interferometric
Imaging

Data Science
Transformation

Cloud Computing HPC Edge Computing

Compute
Continuum

Extreme
Data Mining

Workflow

Extreme
Data

Waveform
Data

Imaging
Data

RFI flagging &
data reduction

Instrument config
& schedulingSun Imaging

(for human-used)

Transient Astrophysics with a Square
Kilometer Array Pathfinder (TASKA)

www.extract-project.eu

Nenufar radio telescopes
at Nançay

Parallel Programming
Model Support

AMLE Summer School 2023

Parallel Programming Models for produc7vity

Parallel programming models …
– expose parallelism in an easy way,
– abstract the complexi(es of the plaAorm.

The objec,ve is to provide produc/vity:

– Programmability. Simple yet flexible to define
parallelism without considering architectural details

– Portability. Code is valid in different plaAorms
– Performance. Compiler and run(me mechanisms that

exploit the performance of the plaAorm

11

Parallel Programming Models

Conven1onal Models

AMLE Summer School 2023

Parallel Programming Models for productivity

12

Model Base
Language

Type of
PPM

Type of
architect

Type of
Parallelism

CUDA C/C++,
Python

HW-
centric

NVIDIA GPU Struct/
Unstruct

OpenCL C/C++ App-
centric

GPU/
FPGAs

Struct

OpenMP C/C++ Parallel-
centric

Shared
mem

Struct/
Unstruct

Pthreads C/C++ Parallel-
centric

Shared
mem

Unstruct

MPI C/C++,
Python

Parallel-
centric

Distributed
mem

Unstruct

COMPSs C++, Java
Python

Parallel-
centric

Distributed
mem

Unstruct

Spark Java,
Python

Parallel-
centric

Distributed
mem

Struct

Ray C++,Java
Python

Parallel-
centric

Distributed
mem

UnstructParallel programming models
suppor<ng tasking

AMLE Summer School 2023

Our proposal: OpenMP

• Mature language constantly reviewed (last release Nov 2021, v5.2)
– De-facto industrial standard in HPC for shared-memory systems.
– Ac0ve research community with an increasing interest on the embedded domain.

• Produc6vity
– Performance

• Support for different types of in-node parallelism and accelerator devices.
• Performance analysis tools.

– Portability
• Supported by many chip vendors (Intel, IBM, ARM, NVIDIA, TI, Gaisler, Kalray).

– Programmability
• Interoperability with other programming models (e.g., CUDA, OpenCL).
• Allows incremental paralleliza0on and can be easily compiled sequen0ally.

13

AMLE Summer School 2023

void main() {
#pragma omp parallel
#pragma omp single
{

int x,y;
#pragma omp task depend(out:x,y)
{ f1(&x,&y); }
#pragma omp task depend(in:x)
{ f2(x); }
#pragma omp target map(to:y) depend(in:y)
{ f3(y); }

}
}

OpenMP tasking model

2. Tasks executed
on the host

3. Tasks executed on the host and
accelerator when f1 completes

void main() {
int x,y;
f1(&x,&y);
f2(x);
f3(y);

}

Sequen<al version

OpenMP version

Executes on the host

Executes on the
accelerator

Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW
func

HW
func

HW
func

1. Open
parallelism

fork

join

f3
f1

f2

main

AMLE Summer School 2023

OpenMP tasking model

15

Expressiveness:
– Exposes what to do in parallel rather than how to do it
– The parallel framework orchestrates the execu:on

Support for different types of parallelism:

– Structured

– Unstructured

Computation is not fully controlled by the
programmer but by the parallel framework

• regular paWerns in the form of parallel loops
• taskloop construct

• irregular paWerns that may change
• task construct and depend clauses

AMLE Summer School 2023

Modeling a RT system with OpenMP tasking

16

T1 T2

Release 'me Release 'me
Deadline

Period

timeExecu'on Slack

• (Sub)system: set of concurrent tasks

• RT-Task (Tx)
– Recurrent: periodic (deadline/period), sporadic

– Priority

– Preemp:on (non/limited/fully preemp:ve)

– Fine-grain parallelism/heterogenous
computa:on

(Prescrip)ve) Priori)es
(priority)

Task scheduling points
(taskyield)

OpenMP tasks
(task)

Nested parallelism
(task/target)

Not supported

AMLE Summer School 2023

Modeling a RT system with OpenMP tasking

17

T1 T2

Release 'me Release 'me
Deadline

Period

timeExecu'on Slack

• (Sub)system: set of concurrent tasks

• RT-Task (Tx)
– Recurrent: periodic (deadline/period), sporadic

– Priority

– Preemp:on (non/limited/fully preemp:ve)

– Fine-grain parallelism/heterogenous
computa:on

Not supported

AMLE Summer School 2023

Time and event-based OpenMP tasks

Applica6on-based control loop
No OpenMP run:me support needed

18

#pragma omp parallel
#pragma omp single nowait
while(1)
{
if(get_time()%100) {
#pragma omp task …
rt_task_1();

}
…
if(get_time()%200) {
#pragma omp task …
rt_task_N();

}
}

#pragma omp parallel
#pragma omp single nowait
{
#pragma omp task event(periodic:100)
rt_task_1();
#pragma omp task event(sporadic:event1)
rt_task_N();
#pragma omp task event(sporadic:event2)
rt_task_N();

}

Run6me-based control loop*
OpenMP run:me support

* M.A. Serrano, S. Royuela, E. Quiñones, Towards an OpenMP Specification for Critical Real-Time Systems. IWOMP 2018.

AMLE Summer School 2023

Time and event-based OpenMP tasks

19

#pragma omp parallel
#pragma omp single nowait
{
#pragma omp task event(periodic:100)
rt_task_1();
#pragma omp task event(sporadic:event1)
rt_task_N();
#pragma omp task event(sporadic:event2)
rt_task_N();

}

Runtime-based control loop*
OpenMP runtime support

OpenMP
run6me

* M.A. Serrano, S. Royuela, E. Quiñones, Towards an OpenMP Specifica;on for Cri;cal Real-Time Systems. IWOMP 2018.

AMLE Summer School 2023

Data
association

Lidar

Radar

Camera

Radar processing

Tracking
Collision
checker

Raw data
acquisition

Sensor data elaboration

Data fusion and tracking Collision checker

Lidar processing

Camera processing
33ms

72ms

100ms

radar_event

lidar_event

camera_event

objs obstacles

Automotive example

20

#pragma omp task event(periodic:33)
camera_processing();
omp_fulfill_event(camera_event);
… // Processing all sensors
#pragma omp task event(sporadic:camera_event) depend(out:objs)
data_association();
#pragma omp task depend(in:objs, out:obstacles)
tracking();
#pragma omp task depend(in:obstacles)
collision_checker();

New instance of the (persistent) task every 33ms

New instance of the (persistent) task
every time camera_event occur

New instance of the tasks when objs and
obstacles data dependencies are honored

AMLE Summer School 2023

Modeling a real->me system

21

• (Sub)system: set of concurrent tasks

• RT-Task (Tx)
– Recurrent: periodic (deadline/period),

sporadic
– Priority
– Preemp:on (non/limited/fully preemp:ve)
– Fine-grain parallelism/heterogenous

computa:on (nested parallelism)
• Described as func.onali.es (Rx)

• Execu.on .me (WCET)
• Accesses labels

T1 T2

Release 'me Release 'me
Deadline

Period

timeExecu'on Slack

R1

R2

R3

R5

R6

R7R4

R8

R11

R9 R10

R12

Task Dependency Graph (TDG)

AMLE Summer School 2023

Main Factors Impacting Parallel Execution: TDG

1. Parallel structure of the applica(on (including data usage): Task
Dependency Graph (TDG)

2. The execu(on and memory model: The RunAme Scheduler responsible of
mapping task to parallel units

#pragma omp task event(periodic:33)
{

int x,y;
#pragma omp task depend(out:x,y)
f1(&x,&y);
#pragma omp task depend(in:x)
f2(x);
#pragma omp target map(to:y) depend(in:y)
f3(y);
#pragma omp taskwait

}

#pragma omp task event(sporadic:object_event)
…

f1

f2 f3

yx

ta
sk

task

taskwait

f3
f1

f2

main

AMLE Summer School 2023

Task Dependency Graph (TDG)

A representa*on of the parallel nature of a
given OpenMP region, extracted by means of
compila*on and run*me methods 1
• Includes all the informa2on for func2onal and

non-funcional correctness
– Parallel units and synchroniza<on

dependencies
– Liveness analysis of variables and data-

sharings involved in the parallel execu.on
• Independent from the targeted parallel

pla6orm (but can include HW dependent
informa2on)
– Execu<on characterisa<on of parallel units

(e.g., .me, energy, memory behaviour)

T1

T2 T3
yx

tas
k

firstprivate(y)firstprivate(x)

shared(x,y)
live vars: x,y

live vars: ylive vars: x

task creation

#pragma omp task event(periodic:33)
{
int x,y;
#pragma omp task depend(out:x,y) // T1
f1(&x,&y);
#pragma omp task depend(in:x) // T2
f2(x);
#pragma omp target map(to:y) depend(in:y) //T3
f3(y);
#pragma omp taskwait

}

1 Supported by LLVM

AMLE Summer School 2023

Time behavior of OpenMP tasks

Timing behaviour depends on the mapping between
parallel units to compu?ng resources

24

Team of OpenMP Threads
(#pragma omp parallel num_threads)

OpenMP Task
(#pragma omp task)

OS Threads
(pool of threads)

HW Threads/HW Cores

Ready tasks queue

scheduling decisions

In the scope of OpenMP:

1. Parallel structure of the application
ü TDG

2. Scheduler(s) responsible of mapping
OpenMP tasks to cores/accelerators
ü Fix OpenMP threads to HW threads:

OMP_PLACES, OMP_PROC_BIND
ü Fix tasks to threads: tied tasks

AMLE Summer School 2023

Time predictability

The execu.on .me of a TDG is determined by:
1. Execu:on of OpenMP tasks within the cri6cal path
2. Interferences of the rest of OpenMP tasks on the cri:cal path
3. Interferences on HW/SW resources with other applica:ons

25

t1 t3 t5 t8

t2 t7 t6 t4

t1 t3 t6 t5 t8

t2 t7 t4

core 0

core 1

core 0
core 1

Shortest possible execu.on .me (cri.cal path)

Interefence

Execu.on .me increment due
to intereference

AMLE Summer School 2023

Preemp9on strategy

26

There exist three preemption strategies:

HP τ1

LP	τ2

Fully	preemp*ve	scheduling	

HP	τ1

LP	τ2

Non-preemp)ve	scheduling	

HP	τ1

LP	τ2

Limited	preemp*on	
(coopera*ve)	scheduling		

OpenMP tasks define a limited preempAon scheduling strategy
– Preemp:ons occur at predefined points (a.k.a. task scheduling points)
– A priority level can be set to OpenMP tasks

The implementa.on of the run.me scheduler is implementa/on-defined

AMLE Summer School 2023

OpenMP Tasking Model Overhead

27

for (int i=0; i<nTasks; ++i) {
#pragma omp task depend(out:a[i%nCores])
cpu_bound_fn();

}

1 task
109 inst.

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 =
𝑠𝑒𝑟𝑖𝑎𝑙_𝑡𝑖𝑚𝑒
#𝑐𝑜𝑟𝑒𝑠

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑇𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 − 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛

10 tasks
108 inst.

102 tasks
107 inst.

103 tasks
106 inst.

104 tasks
105 inst.

104 tasks
105 inst.

1 task
109 inst.

10 tasks
108 inst.

102 tasks
107 inst.

103 tasks
106 inst.

104 tasks
105 inst.

104 tasks
105 inst.

𝐹𝑖𝑥𝑒𝑑 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑: ↑ 𝑡𝑎𝑠𝑘𝑠 ⇒ ↓ 𝑔𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦

Causes:
1. Conten:on on shared resources
• Less pronounced in LLVM due to

distributed task queues and
fine-grained locking

2. Parallel orchestra:on
• Task crea.on and synchroniza.on

AMLE Summer School 2023

Leveraging the Task Dependency Graph

28

The taskgraph
• Reduces/eliminates overhead due to

task orchestra:on and dependency
resolu:on

• Used to instan:ate and orchestrate
tasks

1 task
109 inst.

10 tasks
108 inst.

102 tasks
107 inst.

103 tasks
106 inst.

104 tasks
105 inst.

104 tasks
105 inst.

1 task
109 inst.

10 tasks
108 inst.

102 tasks
107 inst.

103 tasks
106 inst.

104 tasks
105 inst.

104 tasks
105 inst.

#pragma omp taskgraph
for (int i=0; i<nTasks; ++i) {
#pragma omp task depend(out:a[i%nCores])
cpu_bound_fn();

}

AMLE Summer School 2023

TDG-driven framework

29

for (int it=0; it<IT; ++it)
#pragma omp taskgraph
for (int i=0; i<N; ++i){

#pragma omp task
{…}
…

}

Sta-c analysis

Source code Compiler Run0me

...

...data known

data unknown

Itera-on 1 Iteration N

Chenle, Y, Royuela, S, and Quiñones, E. Enhancing OpenMP Tasking Model: Performance and Portability, In Interna'onal Workshop on OpenMP (IWOMP). 2021.
Chenle, Y, Royuela, S, and Quiñones, E. Taskgraph: A Low Conten@on OpenMP Tasking Framework, In hCps://arxiv.org/abs/2212.04771. 2022.

https://arxiv.org/abs/2212.04771

AMLE Summer School 2023

TDG-driven framework

30

for (int it=0; it<IT; ++it)
#pragma omp taskgraph
for (int i=0; i<N; ++i){

#pragma omp task
{…}
…

}

Static analysis

Source code Compiler Run0me

...

...data known

data unknown

Iteration 1 Itera-on N

Chenle, Y, Royuela, S, and Quiñones, E. Enhancing OpenMP Tasking Model: Performance and Portability, In International Workshop on OpenMP (IWOMP). 2021.
Chenle, Y, Royuela, S, and Quiñones, E. Taskgraph: A Low Contention OpenMP Tasking Framework, In https://arxiv.org/abs/2212.04771. 2022.

Exploit benefits from
the first execu.on

Exploit benefits from
the second execu.on

https://arxiv.org/abs/2212.04771

AMLE Summer School 2023

Optimizing Parallel Execution using the TDG

31

Heat diffusion simulatorCholesky decomposi<on

AMLE Summer School 2023

Can tasking replace threading?

32

(a) Problem size W (a) Problem size C

Overhead of Taskgraph when replacing original for with taskloop, with OMP_NUM_THREADS=48 (lower is beLer).

→ Penalization when number of iterations is low (small problem size)
→ Speedup close to optimal when recording is amortized

AMLE Summer School 2023

Interoperability with low-level libraries

33

for (k=0; k<NB; k++) {
#pragma omp target depend(inout: Ah[k][k])
potrf(Ah[k][k], ts, ts);
for (i=k+1; i<NB; i++) {
#pragma omp task depend (in: Ah[k][k]) \

depend(inout: Ah[k][i])
trsm(Ah[k][k], Ah[k][i], ts, ts);

}
for (l=k+1; l<NB; l++){
for (j=k+1; j<l; j++){
#pragma omp task depend(in: Ah[k][l]) \

depend(in: Ah[k][j]) \
depend(inout: Ah[j][l])

gemm(Ah[k][l], Ah[k][j], Ah[j][l], ts, ts);
}
#pragma omp task depend(in: Ah[k][l]) \

depend(inout: Ah[l][l])
syrk(Ah[k][l], Ah[l][l], ts, ts);

}
}

...
cudaGraphNode_t node_17 ;
cudaKernelNodeParams nodeArgs_17 = { 0 } ;
nodeArgs_17.func = (void ∗) potrf;
void ∗ kernelArgs_17[3] = {&Ah[1][1], &ts , &ts} ;
nodeArgs_17.kernelParams = (void ∗∗) kernelArgs_17;
cudaGraphAddKernelNode(&node_17, graph[0], NULL,

0, &nodeArgs_17);
cudaGraphNode_t node_82 ;
cudaHostNodeParams nodeArgs_82 = {0} ;
nodeArgs_82.func = (void ∗) trsm;
void ∗ hostArgs_82[4] = {&Ah[1][1], &Ah[1][1], &ts, &ts};
nodeArgs_82.kernelParams = (void ∗∗) hostArgs_82;
cudaGraphAddHostNode(&node_82, graph[0], &node_17,

1, &nodeArgs_82);
...

Chenle, Y, Royuela, S, and Quiñones, E. OpenMP to CUDA graphs: a compiler-based transformation to enhance the programmability of NVIDIA devices, In SCOPES. 2020.

cudaGraph_t graph;
cudaGraphExec_t instance;
If(!graphCreated){
 cudaStreamBeginCapture(stream, ...);
 ... // kernel calls
 cudaStreamEndCapture(stream, &graph);

 cudaGraphInstantiate(&instance, graph, NULL, NULL, 0);

 graphCreated=true;
}
cudaGraphLaunch(instance, stream);
cudaStreamSynchronize(stream);

static

dynamic

AMLE Summer School 2023

Interoperability with low-level libraries

34

saxpy cholesky

q Goals:
ü Enhance performance (NVIDIA devices)
ü Maintain programmability

– OpenMP synchroniza.ons take longer than
CUDA graphs

q Results:

Chenle, Y, Royuela, S, and Quiñones, E. OpenMP to CUDA graphs: a compiler-based transformation to enhance the programmability of NVIDIA devices, In SCOPES. 2020.

AMLE Summer School 2023

Taskgraph for Adap>ve Op>cs

35

#pragma omp parallel
#pragma omp single
for (n_iters)
#pragma omp taskgraph
{
#pragma omp task depend(…)
WFS_camera();
#pragma omp task depend(…)
pixel_processing();
#pragma omp task depend(…)
RTR_MVM();

}

Simplified code:

Cyril Cetre BSC-THALES RISING Stars Secondment

AMLE Summer School 2023

What happens with the OpenMP tasking model?

36

The specifica(on clearly moves from threading to tasking (host and device):
Parallel
loops

1997 2008

Tasking

2013

Accelerators
taskgroup, depend

2015

taskloop
priority

1.0 3.0 4.0 4.5
2011

taskyield
final, mergeable

3.1
2018

task reductions
affinity, detach

taskwait depend
5.0

2020

inoutset
grainsize/num_tasks

taskwait nowait

5.1
2023

??

6.0

Proposal: a new directive to expose a region that can
be represented as a TDG and event-driven model

#pragma omp taskgraph
#pragma omp task event…

AMLE Summer School 2023

Interoperability with DSMLs

37

Model Driven Engineering (MDE)

1. Construc<on of complex systems

2. Formal verificaBon of FR and NFR with composability

3. Correct-by-construcBon paradigm thourgh code genera<on
• Suitable for single-core execuQon or very limited mulQ-core support

Parallel Programming Models
1. Mandatory for SW producBvity

• Programmability: Parallel abstracQon hiding HW complexiQes
• Portability: CompaQbility mulQple HW plaRorms
• Performance: Efficient exploitaQon of HW parallel capabiliQes

2. Efficient offloading to HW accelera<on devices

Gap between the MDE used for CPS and the PPM supported by parallel platforms

AMLE Summer School 2023

Interoperability with DSMLs: Automo9ve

38

void PeriodicTask() {
#pragma omp parallel
#pragma omp single
{

#pragma omp task depend(out:Image)
{ read_image(); }
#pragma omp task depend(in:Image) depend(out:ResultsA) cpu_omp
{ analysisA(); }
#pragma omp target depend(in:Image) depend(out:ResultsA)\

map(to:Image) map(from:ResultsA) gpu_omp
{ analysisB(); }
#pragma omp task depend(in:ResultsA, ResultsB)
{ read_image(); }

}
}

void analysisA_gpu() { … }

#pragma omp declare variant(analysisA_gpu)\
match(construct={target})\
implementation={extension(gpu_omp)}

void analysisA() {…}

Automa-c code genera-on

1. Exploit parallelism within OpenMP (host and target) tasks
2. Exploit heterogeneity through specializa:ons

Amalthea

AMLE Summer School 2023 39

1. Real-time systems requires parallel computation to cope with the
performance requirements of the most advanced functionalities, and…

2. … current task-based parallel programming models allows to reasoning
about functional correctness and time predictability while removing from
developers the responsibility of managing the complexity of parallel
execution

3. OpenMP provides the level of productivity required while allowing
reasoning about the functional and non-functional requirements across
the compute continuum

Home-take message

AMLE Summer School 2023

Journée thémaBque GdR SOC2 – IRT Saint Exupéry :
« Calcul haute performance pour les systèmes embarqués »

March 14, 2023

OpenMP in the scope of
embedded systems

Eduardo Quiñones
Head of the Predictable Parallel Compu;ng Research Group

{eduardo.quinones@bsc.es}

