Barcelona p p C

supemom”l'ting Predictable
Center Parallel
Centro Nacional de Supercomputacion Computing

©

Task-based Parallel Programming Models: The
Convergence of High-Performance and Edge
Computing Domains

Eduardo Quifones
{eduardo.quinones@bsc.es}

AMLE Summer School 2023 E )(T RACT

Se pte m b er 2 O, 202 3 A distributed data-mining software platform for

extreme data across the compute continuum

www.risingstars-project.eu




A bit Ofime."_—-, -

* PhD on Computer Science at Technical University
of Catalonia (UPC) in 2009

* Team Leader of the Predictable Parallel Computing
Research Group at Barcelona Supercomputing

Center
— Job positions available!! ;)
* Founder and CTO of TalpTech, a Startup company
that provides edge computing solutions to

precision agriculture

AMLE Summer School 2023



-l A

The need of parallel programming models: OpenMP

Modelling a real-time system with OpenMP
Main Factors Impacting Parallel Execution

Runtime optimizacion for real-time systems

AMLE Summer School 2023



Heterogeneous.and-Parallel Computing

7 L i ]
10 i “ Transistors ]
6 ! Wl (thousands)
10° [ S i
N hﬁ“‘ )
10° F pats — Single-Thread
! L %A Performance
10 s A;‘A..i"} > | (SpecINT x 10°)
10 S :’Aazia'.‘*‘“" ga | Frequency (MHz)
a g : . .
, , A ’. "] o L vl‘* e Typical Power
1T ’ io' e o 'w"v;'.'";" e :“ 1 Watts)
“ - " 'v"{ ¥ LYY Lemt Number of
10" | vt ' 1 Logi
R . .o 4 :‘8 . Logical Cores N -
A v v v vy P
10° —‘ : e » eee mmm;o -
1 | 1 1
1970 1980 1990 2000 ¥ 2010 2020

Year

Irruption of multi-cores

Heterogeneous and
Parallel computing
becomes key to cope
with performance
requirements

HPC Domain (~300W)

: ‘» o~
TR —"@f =/
Avionics Space Automotive

Network of HW/SW components
that must operate correctly in
response to its inputs from both
functional and non-functional
perspectives

Original data up o the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

1)
‘cl

Massively parallel systems that
operate as fast as possible

Genomics

Weather

Big data

(Fa
&

NVIDIA A100
(GPU-based)

AMD Instinct™ Ml
(GPU-based)

Intel® Xeon® Series
(40-core)

AMD EPYC™ Series
(up to 64-core)

o

\' g

AMLE Summer School 2023

Embedded Domain (~10-20W)

/‘ e \

NVIDIA Jetson Family
(GPU-based)

Kalray MPPA Coolidge
(80-core fabric)

Xilinx Versal
(FPGA-based with DFX)




Heterogeneous'and-Parallel Computing

Host-centric paradigm: The parallel computation is orchestrated by
the general-purpose multi-core

Accelerator for optimized

graphical processing, linear

algebra and deep learning

General purpose multi-core for
control-flow applications and
parallel orchestration

Optimised HW functions

Network on Chip (NoC)

GPU

" <—
(Accelerator) (Accelerator)

. Multi-core
(Host)

HW HW || HW
func || func || func
—
Peripherals

AMLE Summer School 2023

<

Reconfigurable logic
including dynamic partial
reconfiguration

Addressable memory by the
different computing elements

Interface with the
(physical) world



The exampteiofthe collision detection

Used in Adavanced Driving Assistant System (ADAS) and
autonomous vehicles to identify objects (perception) and
detect potential collisions

Elaborate Sensors raw data Tracking and Fusion
Sensors Module Module

TPU/GPU G
(Accelerator) (Accelerator)

H

by Memory
HW || HW || HW

func || func || func

l Peripherals | ~__ \ SN R___f

| Peripherals Multi-core (Host)
(Accelerator)

Tracking
System

\

1]

i

I

N

I

X

-‘ _,_._u_> Spatial 5 Object

|| | Synchronization detection
I

N

I

N

I

J

AMLE Summer School 2023



'Heterogeneous.and-Parallel Computing- L~

® P ®Q

Performance: complex computations at high speed
Real-time: end-to-end response time within budget
Power/Thermal: energy/temperature within budget
Safety: guarantee correctness and integrity of operation

Security: prevent external elements from affecting
correctness and integrity

AMLE Summer School 2023



The SW Productivity-Gap

1. Efficiently exploit parallelism and achieve the required performance
2. Reason about the functional and non-functional correctness

log

Lines of code/chip
x2 every 10 months

\e";\\\!
. o Transistors/chip
50&@6‘ mp\e,;\x\J X2 every 18 months
aware Software
2 .
s Productivity Gap

Lines of code/day

ctivity
du X2 every 5 years

goftware pro

5

1990

1995 2000 2005 2010 2015

Source: ITRS & Hardware-dependent Software, Ecker et al., Springer

HPC Domain (~300W)

Embedded Domain (~10-20W)

-
&
&

NVIDIA A100 / =

(GPU-based) bkl NVIDIA Jetson Family

(GPU-based)

AMD Instinct™ Ml

(GPU-based) Kalray MPPA Coolidge

(80-core fabric)

Intel® Xeon® Series

(40-core)
Xilinx Versal

AMD EPYC™ Series (FPGA-based with DFX)

(up to 64-core)

Parallel programming models are key!

AMLE Summer School 2023

OpenMP

Like a duck to water!



* Set of computing resources to handle the complete lifecycle chain of data

collected across highly distributed and heterogeneous sources
— Edge Computing to reduce data transmission latencies, minimize security risks and
provide data privacy, and reduce energy consumption
— HPC to support massive parallel processing capabilities and acceleration features
— Cloud Computing to provide highly scalable storage systems and on-demand analytics

technologies

EXTR4CT

A distributed data-mining software platform for
extreme data across the compute continuum

www.extract-project.eu

Data
Infrastructure

Data Mining
Orchestrator ~ Framework

Data-driven

Compute
Continuum

Object [ Data Catalog ][ Semantic ]
Storage Data Staging

!

[ Machine Learning ][ Big Data ]

[ Workflow Description ]
T

Scheduling

oopormr] | e

—’[ Interoperability Abstraction Layer ]

T 1 1
Edge Cloud HPC
Frameworks Frameworks Frameworks

] Parallel Programming
Model Support 9

AMLE Summer School 2023



* Set of computing resources to handle the complete lifecycle chain of data

collected across highly distributed and heterogeneous sources
— Edge Computing to reduce data transmission latencies, minimize security risks and
provide data privacy, and reduce energy consumption
— HPC to support massive parallel processing capabilities and acceleration features
— Cloud Computing to provide highly scalable storage systems and on-demand analytics

teChnOIOgles Nenufar radio telescopes
at Nancay
Extreme ff==——=——— | Beamform || Waveform Imaging
. . . Data e\ patalake / |Data @ || Data @ || Data @ }._
Transient Astrophysics with a Square R é\ A é\
. . [ | | | | |
Kilometer Array Pathfinder (TASKA) | ; i

RFI flagging & | 25,
data reduction | "

Interferometric Data Science

Imaging Transformation l
Instrument config -@g
Extreme Sun Imaging & scheduling "5
Data Mining (for human-used)
Workflow
EXTRACT :
i Parallel Programming Compute Q<—>E.§

A distributed data-mining software platform for Continuum PU| iy
extreme data across the compute continuum M odel su ppo rt Cloud Computing Edge COmputmg

10

www.extract-project.eu
proj AMLE summer >cnooi 2zuzs



Parallel Programming Muodels for productivity

Parallel programming models ...

— expose parallelism in an easy way,

Parallel Programming Models

— abstract the complexities of the platform. @
TPU/GPU
The objective is to provide productivity:
Multi-core
— Programmability. Simple yet flexible to define u
parallelism without considering architectural details lf““ S— |
Peripherals
— Portability. Code is valid in different platforms ﬁ
— Performance. Compiler and runtime mechanisms that Conventional Models

exploit the performance of the platform ! !

AMLE Summer School 2023 H



Ratings (%)

Parallel’Programming-Muodels for productivity

25

20

15

10

TIOBE Programming Community Index Base Type of Type of
Source: www.tiobe.com Language architect Parallelism
CUDA C/C++, HW- NVIDIA GPU  Struct/
Python centric Unstruct
OpenCL C/C++ App- GPU/ Struct
centric FPGAs
, OpenMP C/C++ Parallel- Shared Struct/
A L centric mem Unstruct
Y Pthreads  C/C++ Parallel- Shared Unstruct
/\m centric mem
MW g MPI C/C++, Parallel- Distributed ~ Unstruct
2012 2014 2016 2018 2020 Python centric mem
C == Python Java C++ | == C# == Visual Basic COMPSs C++, Java Parallel- Distributed Unstruct
Python centric mem
JavaScript == PHP == Assembly language sSQL
Spark Java, Parallel- Distributed Struct
Python centric mem
Parallel programming models Ray C++,Java Parallel- Distributed Unstruct
supporting tasking Python centric mem
12

AMLE Summer School 2023




Our proposali OpeniVIP

 Mature language constantly reviewed (last release Nov 2021, v5.2)
— De-facto industrial standard in HPC for shared-memory systems.

— Active research community with an increasing interest on the embedded domain.

*  Productivity

— Performance
* Support for different types of in-node parallelism and accelerator devices.
* Performance analysis tools.

— Portability
* Supported by many chip vendors (Intel, IBM, ARM, NVIDIA, Tl, Gaisler, Kalray).

— Programmability

* Interoperability with other programming models (e.g., CUDA, OpenCL).
* Allows incremental parallelization and can be easily compiled sequentially.

AMLE Summer School 2023 =



OpenMP-tasking-model

Sequential version

void main() {
int x,y;
£f1(&x,68&y)
£2 (%) ; Executes on the host
£3(y) Executes on the
J accelerator

OpenMP version

void main () {
#pragma omp parallel

1. Open
parallelism
» fork
mainI
|£1!
f2| l £3
join'

TPU/GPU
(Accelerator) (Accelerator)

#ipragma omp single @
{

int x,vy;

#pragma omp task depend(out:x,y)

{ fl(ex,8y) 7 }

#pragma omp task depend (in:x)@—

{ £2(x); }

#pragma omp target map(to:y) depend(in:y)@

{ £3(y); }

2. Tasks executed
on the host

=

HW || HW || HW
l Peripherals |

func || func || func

3. Tasks executed on the host and
accelerator when f1 completes

AMLE Summer School 2023



OpenMP-tasking model

Expressiveness:
— Exposes what to do in parallel rather than how to do it

— The parallel framework orchestrates the execution

Support for different types of parallelism:

* regular patterns in the form of parallel loops
— Structured

* taskloop construct

* irregular patterns that may change
— Unstructured-

* task construct and depend clauses

Computation is not fully controlled by the

programmer but by the parallel framework

“I'm a software engineer, so I can confirm
AMLE Summer School 2023 IEpeasis oy magic



Maodeling-a RTIsystem-with OpenMP-tasking

Release time

* (Sub)system: set of concurrent tasks Deadline

n] | [

>
time

4

-« r————>
Execution  Slack

Period

A
v

_ OpenMP tasks

i RT'TaSk (Tx) - (task)

Recurrent: periodic (deadline/period), sporadic —» Not supported

_ (Prescriptive) Priorities

Priority > (priority)
Preemption (non/limited/fully preemptive) Task scheduling points
' (taskyield)
Fme—gram- parallelism/heterogenous _ Nested parallelism
computation "~ (task/target)

AMLE Summer School 2023 16



Maodeling-a RTIsystem-with OpenMP-tasking

Release time

* (Sub)system: set of concurrent tasks Deadline

T, l S

Execution  Slack

Period

* RT-Task (T,)

— Recurrent: periodic (deadline/period), sporadic —— Not supported

AMLE Summer School 2023 Y



Time-and-event-based-OpenMP-tasks

Application-based control loop Runtime-based control loop*
No OpenMP runtime support needed OpenMP runtime support

#pragma omp parallel #pragma omp parallel

#pragma omp single nowait #pragma omp single nowait

while (1)

{

{ #pragma omp task event (periodic:100)

if (get time () %100) {

#pragma omp task .. rt_task 107 i

rt task 1(); #pragma omp task event (sporadic:eventl)
) - - rt task N();
" #pragma omp task event (sporadic:event?)
if (get time () %200) { rt task N{();

#pragma omp task .. A B

rt task N();

}

}

* MLA. Serrano, S. Royuela, E. Quifiones, Towards an OpenMP Specification for Critical Real-Time Systems. IWOMP 2018.

AMLE Summer School 2023 18



Time-and-event-based-OpenMP-tasks

OpenMP Runtime-based control loop*
runtime OpenMP runtime support

#pragma omp parallel

#pragma omp single nowait ‘

{
#pragma omp task event (periodic:100) O
rt task 1();
#p;agma_omp task event (sporadic:eventl) O
rt task N();
#pragma omp task event (sporadic:event2) ‘
rt task N();

* MLA. Serrano, S. Royuela, E. Quifiones, Towards an OpenMP Specification for Critical Real-Time Systems. IWOMP 2018.

AMLE Summer School 2023 o



Raw data Sensor data elaboration
acquisition

72ms radar_event
» Radar processing .
Data fusion and trackisg . Collision checker
Radar -
\ | 100ms Lidar processin lidar| event | Data objs ok obstacles ) [ cojjision
((@))/ " P g | association [acng == | | checker
Lidar ; ) ; g

C}:‘l N Camera processing
camera 33ms ) camera_event

#pragma omp task event (periodic:33) New instance of the (persistent) task every 33ms
camera processing();

New instance of the (persistent) task

omp fulfill event (camera event) ]
> ~ — every time camera_event occur

#pragma omp task event (sporadic:camera event) depend(out:objs)

data association();

#pragma omp task depend(in:objs, out:obstacles) New instance of the tasks when objs and
tracking () ; obstacles data dependencies are honored
#pragma omp task depend(in:obstacles)

collision checker();

AMLE Summer School 2023 20




Maodeling-areal-time-system

Release time

Deadline
T || [
——r —>> f >
. RT-TaSk (Tx) Execution  Slack time
) Period :

— Fine-grain parallelism/heterogenous
computation (nested parallelism)

* Described as functionalities (Rx) Task Dependency Graph (TDG)

* Execution time (WCET)

e Accesses labels

AMLE Summer School 2023 21



| Main:Eactorsilmpacting-Parallel Execution: TDG— .

1. Parallel structure of the application (including data usage): Task
Dependency Graph (TDG)

2. The execution and memory model: The Runtime Scheduler responsible of
mapping task to parallel units

#fpragma omp task event(periodic:33)
{

int x,y; tGSk.
#pragma omp task depend(out:x,y) T
fl(ex,&y); mainl
#pragma omp task depend(in:x) § |f1§

£2 (x) f2| l £3
#pragma omp target map(to:y) depend(in:y) L. B
£3(y) s
#pragma omp taskwait taskwait

}

#pragma omp task event(sporadic:object event)

AMLE Summer School 2023



. # task t( iodic:33)
A representation of the parallel nature of a [pragna onp task eventipertocie

given OpenMP region, extracted by means of ;n;;rnz;omp task depend (outix,y) // T1
compilation and runtime methods ! 1 (o, £) 7 -
. . . in: //
« Includes all the information for functional and #pragna omp fask depend(inix) // 12
non-funcional correctness #pragma omp target map (to:y) depend(in:y) //T3

£3(y)

— Parallel units and synchronization #pragma omp taskwait

dependencies }
— Liveness analysis of variables and data-

sharings involved in the parallel execution task creation
* Independent from the targeted parallel

platform (but can include HW dependent

shared(x,y)

information) livevars: x,y
— Execution characterisation of parallel units ’
(e.g., time, energy, memory behaviour) firstprivate (x) firstprivate (y)
live vars: x live vars: y
1Supported by LLVM

AIVILE Summer SChool 2023



Timing behaviour depends on the mapping between
parallel units to computing resources

In the scope of OpenMP:

1. Parallel structure of the application

v TDG

2. Scheduler(s) responsible of mapping
OpenMP tasks to cores/accelerators

v" Fix OpenMP threads to HW threads:

OMP_PLACES, OMP_PROC_BIND
v Fix tasks to threads: tied tasks

(OpenMP Task Ready tasks queue
(#pragma omp task) HEEERER

R .
Team of OpenMP Threads %gg%
(#pragma omp parallel num_threads)

S ——— oo e
OS Threads ég
(pool of threads) %%gg ’

S — ,i, ........ N
HW Threads/HW Cores [

-------- » scheduling decisions
24

AMLE Summer School 2023



Time predictability

The execution time of a TDG is determined by:
1. Execution of OpenMP tasks within the critical path
2. Interferences of the rest of OpenMP tasks on the critical path
3. Interferences on HW/SW resources with other applications

Shortest possible execution time (critical path)

core0 t t t »
. 3 > interference critical path
corel t; t; ts ty tasks

Execution time increment due
to intereference

Interefence/-\ o >
core 0 t; ts ( ts ) ts
N "4
core 1 t, S~ ¢,

AMLE Summer School 2023

25



Preemption-strategy

There exist three preemption strategies: OpenMP

Enabling HPC since 1997

» gl

B A e S

Fully preemptive scheduling Non-preemptive scheduling Limited preemption
(cooperative) scheduling

A 4

OpenMP tasks define a limited preemption scheduling strategy
— Preemptions occur at predefined points (a.k.a. task scheduling points)
— A priority level can be set to OpenMP tasks

The implementation of the runtime scheduler is implementation-defined

AMLE Summer School 2023 26



OpenMP- Fasking-Model-Overhead

NUM_CORES

for (int 1=0; i<nTasks; ++1i) {

. -+ N
#pragma omp task depend(out:a[i%nCores])
cpu bound fn();

) serial_time
. Computation = ———
#cores

. Overhead = Total_time — Computation

Fixed workload: T tasks = | granularity

Causes:

1. Contention on shared resources

e Less pronounced in LLVM due to

distributed task queues and
fine-grained locking

2. Parallel orchestration
* Task creation and synchronization

100

10

1

Execution time (ms)

g

M
E100

Execution time
—
o

vvvvvvvvvvvvvvvvvvvvv

AMLE Summer School 2023

0

6
4
0

1task  10tasks 107tasks 103tasks 10*tasks 10*tasks
10%inst. 10%inst. 107inst. 10finst. 10%inst. 10°inst.

1task  10tasks 102tasks 103tasks 10*tasks 10*tasks
10%inst. 10%inst. 107inst. 10%inst. 10°inst. 10°inst.

—

27



Leveraging the Task-Dependency Graph

NUM_CORES
. s R
#pragma omp taskgraph N
for (int 1=0; i<nTasks; ++1i) {
#pragma omp task depend (out:a[i%nCores])
cpu_bound fn(); o
}

The taskgraph

* Reduces/eliminates overhead due to
task orchestration and dependency
resolution

* Used to instantiate and orchestrate
tasks

:13582.6
__1000:- 3
[72]
E T
[}
£ 100/
S
= JR—
§10> ' .i '
(NN ]

1
l1task  10tasks 107tasks 103tasks 10*tasks 10*tasks
10%inst. 10%inst. 107inst. 10finst. 10°inst. 10°inst.

)
E100
(0]
E 1 __
"é’ 9 _0.2
2 10
3
&
1

l1task  10tasks 102tasks 103tasks 10*tasks 10*tasks
M 10°inst. 10%inst. 107inst. 108inst. 10%inst. 10%inst.

vvvvvvvvvvvvvvvvvvvvv

AMLE Summer School 2023



TDG=drivenframework

Source code Compiler Runtime
. \ Iteration 1 Iteration N
for (int it=0; it<IT; ++it) data known [ ]
#fpragma omp taskgraph
for (int i=0; 1i<N; ++1i) { ' ‘ 4
*{*P‘}fagma CmEjieas s Y | Static analysis O )
} datalunknown »’ '

Chenle, Y, Royuela, S, and Quifiones, E. Enhancing OpenMP Tasking Model: Performance and Portability, In International Workshop on OpenMP (IWOMP). 2021.
Chenle, Y, Royuela, S, and Quifiones, E. Taskgraph: A Low Contention OpenMP Tasking Framework, In https://arxiv.org/abs/2212.04771. 2022. 29
ARIVILLD SQUILTITTIE OUITIVVUI £2UZLDO



https://arxiv.org/abs/2212.04771

TDG=drivenframework

Exploit benefits from
the first execution

Source code Compiler e Runtime

-~ /

, \ / M Iteration 1 Iteration N
for (int it=0; it<IT; ++it) A

#pragma omp taskgraph data known ' ‘ 1 )
for (int i=0; i<N; ++1i) { U

" O P -~ N
pragma omp task P \
o) Static ana/ys:s b ~ / ;@

| >® @'
} data unknown \ O |
L J N /

e
-
-
>

Exploit benefits from
the second execution

Chenle, Y, Royuela, S, and Quifiones, E. Enhancing OpenMP Tasking Model: Performance and Portability, In International Workshop on OpenMP (IWOMP). 2021.
Chenle, Y, Royuela, S, and Quifiones, E. Taskgraph: A Low Contention OpenMP Tasking Framework, In https://arxiv.org/abs/2212.04771. 2022. 30
ARIVILLD SQUILTITTIE OUITIVVUI £2UZLDO



https://arxiv.org/abs/2212.04771

Optimizing-ParallelExecution using-the-TDG

Cholesiy decomposition Heat diffusion simulator
1000
£ & 140
r E 120
e ™ g 100 N
< + 80
S EI
5 10 3 40 - A = =
: % 20 . g
(] g 0
1 64 144 256 400 784 1024 129 1600 1936 2304

400 576 784 1024 1296 1600 1936 2304 (623k) (280k) (161k) (104k) (55k) (43k) (35k) (29k) (25k) (23k)
(760k)  (528k) (388k)  (297k)  (235k)  (528k) (157k)  (132k)

Number of blocks (# instructions)

Number of blocks (# instructions)

~& +LLVM @ LLVM+Taskgraph —& -GOMP - GOMP+Taskgraph

AMLE Summer School 2023 31



Can taskingreplace-threading?

(o))
o
o

533

% slower w.r.t. for
B N W A U
© © O
© © o

00
00 .
0o 'S
cG

100

200

100
71 77

FT BT

89

111

SP

(a) Problem size W

60.0
50.0
40.0
30.0
20.0
10.0
— 0.0

—d l —NN ey -10.0

% slower w.r.t. for

W Optimal TDG Taskgraph

¢
L3
CONPILER INFRASTRUCTORE

55.1

20.6 19.7

4

6.7 8.6 8.6
18 13 : 2.8 3. 43 52 43
SN\ 00 00 “‘-“J [N\ -N ‘

_— —_
3115 -0.9
CG FT BT SP LU EP
(a) Problem size C
[ Taskloop

Overhead of Taskgraph when replacing original for with taskloop, with OMP_NUM_THREADS=48 (lower is better).

- Penalization when number of iterations is low (small problem size)

—> Speedup close to optimal when recording is amortized

32

AMLE Summer School 2023



Interoperability with-low=level libraries

k<NB; k++) {
#pragma omp target depend(inout: Ah[k] [k])
potrf (Ah[k] [k], ts, ts);
for (i=k+1; i<NB; i++) {
#pragma omp task depend (in: Ah[k][k]) \
depend (inout: Ah[k][i])
(Ah[k][k], Ah[k][i], ts, ts);
}
for (l=k+1; 1<NB; 1++){
for (j=k+1; j<1; Jj++){

#pragma omp task depend(in: Ah[k][1]) \
depend (in: Ah[k][j]) \
depend (inout: Ah[j][1])

gemm (Ah[k] [1], Ah[k][Jj], Ah[J][1l], ts, ts);

}
#pragma omp task depend(in: Ah[k][1]) \
depend (inout: Ah[1][1])

syrk(Ah[k] [1], Ah[1l][1], ts, ts);

Chenle, Y, Royuela, S, and Quifiones, E. OpenMP to CUDA graphs: a compiler-based transformation to enhance the programmability of NVIDIA devices, In SCOPES. 2020.

CUDA
Graphs

jvoid * hostArgs 82[4] =
—> _

D T T PR
1

Hooo

:cudaGrathodeit node_17 ;

icudaKernelNodeParams nodeArgs_17 = { 0 } ;

inodeArgs 17.func = (void x) potrf;

. _

:void * kernelArgs 17([3] = {&Ah[1][1], &ts , &ts} ;
inodeArgs 17.kernelParams = (void #**) kernelArgs 17;

:cudaGraphAddKernelNode(&node717, graph[0], NULL,

0, &nodeArgs 17);
icudaGraphNode t node 82 ;
icudaHostNodeParams nodeArgs 82 =
inodeArgs 82.func = (void *) trsm;

{&Ah[1][1], &Ah[1][1], &ts,
inodeArgs_82.kernelParams = (void **) hostArgs_82;
IcudaGraphAddHostNode(&node782, graph[0], &node 17,
1, &nodeArgs 82);

{0} ;

icudaGraph t graph;

icudaGraphExecit instance;

1If (!graphCreated) {

cudaStreamBeginCapture (stream, ...);
// kernel calls

cudaStreamEndCapture (stream, &graph);

cudaGraphInstantiate (&instance, graph, NULL, NULL,

graphCreated=true;

udaGraphLaunch (instance, stream);
udaStreamSynchronize (stream) ;

Q Q -«

AIVILE dulrnimer dCnool Zu4ss

&ts};

0);

33



Interoperability with-low=level libraries

_O_penMP —_— CUDA

Graphs

] Goals: ] Results:

v Enhance performance (NVIDIA devices) — OpenMP synchronizations take longer than
v Maintain programmability CUDA graphs

saxpy cholesky

-

OO+ O (W) N
NS— - " 0 | ,
U 1.00E+03 =
- O0OF+0 -
o fl':-\':- .::
- P e coescg
3 T o :.
= 1 00E+00 “ 1.00E-01
e

1 10 100 1 10 100

Number of iterations

wili=OpenVP e CUDA GRAPH V1O CUDA GRAPH Yaver will= OperP «@-=CUDAGRAPHON V100 CUDA Gragh an Xawvwer

Chenle, Y, Royuela, S, and Quifiones, E. OpenMP to CUDA graphs: a compiler-based transformation to enhance the programmability of NVIDIA devices, In SCOPES. 2020. 34
AIVILE DUITIITIET DLIUUI LULD



Taskgraph-for Adaptive Optics

ixel
Pixel processing |22 »  RTR MVM

\ A

| Pixels and slopes | | Raw commands | | Filtered commands |
Simplified code:
#pragma omp parallel 160000 BN Regular CUDA Graph & GPU sync
#praglna omp single [ OpenMP CUDA Graph & GPU sync
for (n_iters) 140000
#pragma omp taskgraph , 120000
{ $ 100000
#pragma omp task depend(..) g 20088
WE'S camera () ; §
#pragma omp task depend(..) © 60000
pixel processing(); 40000
#pragma omp task depend(..) 20069
RTR MVM () ; L : :
} %"sio 520 530 i 540 550 560 570 580 50
Time [ps]
=== : Maximum Mesured Execution time (MMET)

Cyril Cetre BSC-THALES RISING Stars Secondment AMLE Summer School 2023 35



‘What happenswith-the-OpenMP tasking-model?

The specification clearly moves from threading to tasking (host and device):

_ inoutset
Parallel taskyield taskloop grainsize/num_tasks
loops final, mergeable priority taskwait nowait
| task reductions
Tasking Accelerators affinity, detach 2?

| taskgrourl>, depend taskwait depend |
1.0 3.0l 3.1l 2.0 45| 5.0] 5.1 6.0
1997 2008 2011 2013 2015 2018 2020 2023

I

Proposal: a new directive to expose a region that can
be represented as a TDG and event-driven model

#pragma omp taskgraph
#pragma omp task event..

AMLE Summer School 2023 36



Interoperability with-DSMLs

Model Driven Engineering (MDE)

Logic
MDE Controll Actuators ;
o CAPELLA ontroller 1.  Construction of complex systems
AMALTHEA, AllY] e . . -
AUTOSAR) 2.  Formal verification of FR and NFR with composability
3.  Correct-by-construction paradigm thourgh code generation
* Suitable for single-core execution or very limited multi-core support
Gap between the MDE used for CPS and the PPM supported by parallel platforms
— Parallel Programming Models
Programming g ) : . .
o Models —i--- (N, 1. Mandatory for SW productivity
e.g. OpenMP, ',‘ o
E Peacl I.Id CUDA,C%";’;E; : *  Programmability: Parallel abstraction hiding HW complexities
Model *  Portability: Compatibility multiple HW platforms
R”p“a'rt;rl‘lqeﬁ + Performance: Efficient exploitation of HW parallel capabilities

frameworks

2. Efficient offloading to HW acceleration devices

AMLE Summer School 2023 37



Interoperability with-DSMLs: Automotive

1. Exploit parallelism within OpenMP (host and target) tasks
2. Exploit heterogeneity through specializations

Amalthea Automatic code generation
© BOSCH 4Sp>n1c » OpenMIP

void PeriodicTask () {
#pragma omp parallel
#pragma omp single
{

~ @ PeriodicTask
w *i Activity Graph
2 call read_image

~ ‘o call analysisA #pragma omp task depend (out:Image)

» (@ analysisA.variantType <« cpu_omp| > { read image(); }
+ 4 call analysisB #pragma omp task depend(in:Image) depend (out:ResultsA) cpu_omp
. . { analysisA(); }
> ManalysisB.variantType <. #pragma omp target depend (in:Image) depend (out:ResultsA)\
“ call merge_results map (to:Image) map (from:ResultsA) gpu_omp
{ analysisB(); }
~ © analysisA #pragma omp task depend(in:ResultsA, ResultsB)
~ @ Local Labels { read image(); }
4 variantType (Variant) }
w *4 Activity Graph }
£ read Image
v +L, <> Switch . .
+ € case: "CPU_OMP" void analysisA gpu() { ..}
~ [¥ condition: OR
~E c’as:e],.a,gilzsgﬁ\:”annype #pragma omp declare variant (analysisA gpu)\
s ’ match (construct={target})\
~ B condition: OR implementation={extension (gpu omp) }
» O analysisA.variantType = gpu_omp -

void analysisA() {..}

AMLE Summer School 2023 38

& write ResultsA



. Real-time systems requires parallel computation to cope with the

performance requirements of the most advanced functionalities, and...

. ... current task-based parallel programming models allows to reasoning
about functional correctness and time predictability while removing from
developers the responsibility of managing the complexity of parallel
execution

. OpenMP provides the level of productivity required while allowing
reasoning about the functional and non-functional requirements across
the compute continuum

AMLE Summer School 2023 39



Barcelona | PPRC

Supercomputing Predictable
Center . Parallel

Centro Nacional de Supercomputacion Computing

©

OpenMP in the scope of
embedded systems

Eduardo Quifiones
Head of the Predictable Parallel Computing Research Group
{eduardo.quinones@bsc.es}

Journée thématique GdR SOC2 - IRT Saint Exupéry :
« Calcul haute performance pour les systemes embarqués »

March 14, 2023




