
D3.2 Data-driven orchestration andmonitoring (first release)
Version 1.0

Documentation Information
ContractNumber 101093110
Project Website www.extract-project.eu
ContratualDeadline M15, 31st March 2024
DisseminationLevel Public
Nature Report
Author IKERLAN (IKL)
Contributors BSC, IBM, IKL, SIX
Reviewer LRI
Keywords Data, orchestration, monitoring, first-release

http://www.extract

1

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

Change Log
Version Description Change
V0.1 Initial draft of the table of contents
V0.2 Distributed Monitoring Architecture
V0.3 Code addition for justification
V0.4 Review (LRI)
V0.5 Apply comments from review (IKL)
V1.0 Ready to submit

The EXTRACT Project has received funding from the European Union’sHorizon Europe programme under grant agreement number 101093110.

2

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

Table of Contents
1. Introduction...3
1.1. Structure ... 3
1.2. Relationship with other WPs..3

2. Distributed Monitoring Architecture..4
2.1. Monitoring Components..4

2.1.1. Data Storage ... 5
2.1.2. Data Collectors...6
2.1.3. Data Transport...8
2.1.4. Data Processing Procedures ...8
2.1.5. Visualization...10

2.2. Metrics...12
2.2.1. CPU..13
2.2.2. Memory...14
2.2.3. Networking..16
2.2.4. Storage...17
2.2.5. System..18

2.3. Validation of requirements..18
3. Data-driven Workflow Deployment and Scheduling ..20
3.1. Orchestrator architecture..20
3.2. Technology description...22

3.2.1. Kubernetes ...22
3.2.2. COMPSs .. 23
3.2.3. Nuvla..24

3.3. Interaction with Monitoring Platform...24
4. Next Steps..25
4.1. Prometheus Service Discovery...25
4.2. Metric Candidates..26
4.3. Exporter Candidates...26
4.4. Monitoring API .. 27
4.5. Scheduling algorithms..27

5. Conclusion..28
6. Acronyms and Abbreviations ... 29
7. References..29

3

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

1. Introduction
This document provides a comprehensive account of advancements made thus farwithin Extract project´s Work Package 3. To be precise, it mainly encompasses thework undertaken in the context of two tasks: T3.2 Data-driven Workflow Deploymentand Scheduling, devoted to the development of the EXTRACT orchestrator, and T3.3Distributed Monitoring Architecture, which aims to develop a monitoring infrastructurethat will collect information from the execution of data mining workflows across thecompute continuum. D3.2 marks a significant milestone in the ongoing Extractresearch project, providing a comprehensive account of advancements made thus far.
In order to meet Objective 2 (which addresses the development of novel data-drivenorchestration mechanisms to deploy and run data-mining workflows) together with allthe corresponding technical objectives, the primary focus of this deliverable lies indetailing a monitoring system designed to capture metrics related to various featuresof the Extract platform. These metrics serve as crucial inputs for an orchestrator,enabling it to make optimized decisions. The orchestrator itself will be thoroughlydescribed, outlining its components and functionalities. Furthermore, this documentdelves into the intricate integration between the orchestrator and the monitoringsystem, offering a holistic understanding of the data-driven orchestration andmonitoring framework developed within the project.

1.1. Structure
This document is organized in 4 sections:

 Section 1 introduces the document and gives a main view of the structure of thedocument. Section 2 details the distributed monitoring architecture, enumerating itscomponents, discussing the metrics employed, examining the prerequisites forvalidation, and outlining the subsequent actions. Section 3 covers the implementation and arrangement of the data-drivenworkflow, outlining the architecture of the orchestrator and explaining thetechnology utilized. Section 4 gives a summary of the conclusions drawn from this document.
The document concludes by listing the acronyms, abbreviations, and bibliographyreferences.

1.2. Relationship with other WPs
Deliverable Task Relation
D2.2 T2.3 Data-Mining Framework (WIP)
D3.1 T3.1 Data-driven orchestration requirement specification
D4.1 T4.1 Compute continuum requirement specification andEXTRACT platform integration plan
D4.2 T4.2 Programming and Execution Models Interoperability

Table 1. Relationship with other WPs

4

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

2. Distributed Monitoring Architecture
The distributed monitoring architecture was initially proposed in deliverable D3.1. Thecurrent section provides further details on the current state of the monitoringarchitecture. The different technologies used to implement each proposed componentsare defined and the different metrics that are being monitored are listed. Additionally,the current fulfillment of the requirements presented in deliverable D3.1 are specifiedwhich allows identifying the future steps towards the development of the monitoringarchitecture.

2.1. Monitoring Components
The monitoring architecture proposed in deliverable D3.1 has been updated as seenin Figure 1. The components necessary to implement the monitoring system can beidentified and will be explained in more detail in the following subsections.
Indicate that this monitoring system will be deployed in the Kubernetes architectureof the project using Ansible. This software tool provides simple but powerfulautomation including provisioning, configuration management, application deploymentand orchestration. In the following subsections also include playbooks and roles whichare the files where the Ansible tool defines the tasks to be executed on the nodes ofarchitecture.

Figure 1 Monitoring Architecture
Prometheus [1] has been used as the cornerstone technology to implement thismonitoring system. Prometheus is an open-source monitoring and alerting toolkitdesigned for reliability and scalability in modern and dynamic infrastructures,particularly those using container orchestration systems like Kubernetes. Thearchitecture of Prometheus and some of its ecosystem's components are illustrated inthe next figure.

5

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

Figure 2 Prometheus Architecture
The following code snippet is a Ansible playbook that deploys the whole monitoringarchitecture on the Kubernetes infrastructure. The first role installs helm which is aKubernetes deployment package manager that is required for the rest of the roles.

- name: Install Prometheus

hosts: master
roles:

- install-helm
- install-prometheus
- install-metrics-server
- install-grafana

Prometheus capabilities, combined with other technologies, are leveraged toimplement the different components in the monitoring architecture defined indeliverable D3.1. In the following sections, each of these components is detailed,including the corresponding role.

2.1.1. Data Storage
The Prometheus ecosystem includes multiple components but the most important isthe Prometheus Server. This service includes a time series database where capturedmetrics are stored.

6

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

To consult or retrieve information from this database, PromQL (Prometheus QueryLanguage) is used. This query language is designed specifically for querying andmanipulating time series data collected by Prometheus. Some of the most importantfeatures or key aspects that can be highlighted is that PromQL supports instantsqueries and range queries where aggregation functions and arithmetic and binaryoperations like addition, subtraction, multiplication, division, and comparisons can beapply. Furthermore, it includes functions for calculating the rate of change and thetotal increase and functions to work with histogram and summary metrics, which areused to measure the distribution of values.
The following code snippet shows the role for installing Prometheus.

- name: Add Prometheus Helm chart repository

kubernetes.core.helm_repository:
name: prometheus-community
repo_url: https://prometheus-community.github.io/helm-charts

- name: Install Prometheus Helm chart
kubernetes.core.helm:

release_name: my-prometheus
chart_ref: prometheus-community/prometheus
chart_version: 22.7.0
state: present # present / absent: use this to remove installation
release_namespace: monitoring
create_namespace: true
values:

server:
service:

type: NodePort
nodePort: 31000

2.1.2. Data Collectors
The data collectors are basically software components called exporters that collect andexpose metrics from system, services, and applications in a format that Prometheuscan scrape and store. Therefore, they act as bridges between Prometheus and systemmonitor allowing to gather information about health, performance, and other relevantmetrics.

7

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

In this case, the exporters that are used for collecting and exposing the architecturemetrics are kube-state-metrics [2] and metrics-server [3]. The first one is used forexposing the state of various Kubernetes objects as metrics. This object includesnodes, pods, services and more and takes information from Kubernetes API serverabout the current state of these objects and exposes them as Prometheus stylemetrics. The last one collects resource utilization metrics from the various componentsof Kubernetes clusters using Kubelets and exposes them as Prometheus style metrics.
In addition, the use of OpenTelemetry [4] for exposing custom metrics is alsoconsidered. OpenTelemetry, also known as OTel is an open-source observabilityframework for instrumenting, generating, collecting, and exporting telemetry datasuch as traces, metrics, and logs. In this case this software can be implemented in thedifferent services for exposing custom metrics to Prometheus server. For example, itis possible to export the number of times certain code has been executed or has failed.

Figure 3 OpenTelemetry as Prometheus Exporter

The following code snippet shows the role for installing metrics-server exporter.

- name: Add Metrics server Helm chart repository

kubernetes.core.helm_repository:
name: metrics-server-repo
repo_url: https://kubernetes-sigs.github.io/metrics-server/

- name: Install Metrics Server Helm chart
kubernetes.core.helm:

release_name: metrics-server
chart_ref: metrics-server-repo/metrics-server
chart_version: 3.11.0
state: present # present / absent: use this to remove installation
release_namespace: kube-system
values:

args:

8

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

- --kubelet-insecure-tls

2.1.3. Data Transport
There are two fundamentally different approaches by which the Prometheus servercollects metrics. The “push approach” when the application actively pushes its metricsto designated Prometheus Pushgateway. Then the Pushgateway becomes responsiblefor exposing metrics over HTTP. And the “pull approach” when Prometheus Serverperiodically pulls metrics from the exposed HTTP endpoint. Typically, metrics areexposed at a designated endpoint (e.g., ‘/metrics’) and formatted using a simple text-based format that includes key-value pairs, and each metric is associated with atimestamp.

2.1.4. Data Processing Procedures
As already indicated in a previous section there is the possibility of usingOpenTelemetry to export custom metrics. The main advantage of its use is theopportunity to implement data processing, analytics, aggregation, and clean beforeexporting the metrics, although they must maintain the OpenTelemetry protocol datamodel (OTLP).
The OpenTelemetry metrics data model is defined by a protocol specification andsemantic conventions, specifically designed for delivering pre-aggregated metrictimeseries data. This model serves a dual purpose: enabling the seamless import ofdata for existing systems and the effortless export of data into established systems.

2.1.4.1. Open Telemetry example
The following code snippet shows an example of a simple application what uses OpenTelemetry to expose a counter that is updated every second with a random valuebetween -100 and 100.
import sys
import time
import random
from opentelemetry import trace, metrics
from opentelemetry.sdk.resources import Resource, SERVICE_NAME
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.exporter.prometheus import PrometheusMetricReader
from prometheus_client import start_http_server

Service name required for the Prometheus

9

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

resource = Resource.create(attributes={SERVICE_NAME:"example_application"})

Start the Prometheus client
start_http_server(port=8000, addr="0.0.0.0")

Initialize PrometheusMetricReader which pulls metrics from the SDK
on-demand to respond to scrape requests
reader = PrometheusMetricReader()
provider = MeterProvider(resource=resource, metric_readers=[reader])
metrics.set_meter_provider(provider)

Acquire a tracer
tracer = trace.get_tracer("example_aplication.tracer")

Acquire a meter.
meter = metrics.get_meter("example_aplication.meter")

Create a random counter
random_meter = meter.create_up_down_counter(

name="example_aplication.random",
description="Random number of example application",

)

Start the application
sys.stdout.flush()
while True:

Create a new span
with tracer.start_as_current_span("do_random") as random_span:

time.sleep(1)
random_number = random.randint(-100, 100)
Set the random number as an attribute
random_span.set_attribute("random.value", random_number)
Add the random number to the random counter
random_meter.add(random_number)

10

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

sys.stdout.flush()

2.1.5. Visualization
Prometheus itself does not provide native visualization capabilities so Grafana [5] hasbeen used as monitoring platform to visualize and analyze metrics. Using thisvisualization tool, it is possible to connect Prometheus as a data source and createcomprehensive dashboards. There is also the possibility of importing differentdashboards made by the community that already have the queries and charts defined.In this case several dashboards have been imported. On the one hand, dashboardshave been imported to visualize the different metrics of the distinct entities that makeup a Kubernetes cluster. And on the other hand, other dashboards that allow to viewmetrics exposed by custom nodes like the Jetson Nano.
The following code snippet shows the role for installing Grafana.

- name: Add Prometheus Helm chart repository

kubernetes.core.helm_repository:
name: grafana-community
repo_url: https://grafana.github.io/helm-charts

- name: Install Grafana Helm chart
kubernetes.core.helm:

release_name: my-grafana
chart_ref: grafana-community/grafana
chart_version: 7.0.19
state: present # present / absent: use this to remove installation
release_namespace: monitoring
create_namespace: true
values:

adminPassword: extract2024
datasources:

datasources.yaml:
apiVersion: 1
datasources:

- name: Prometheus
type: prometheus
url: http://my-prometheus-server
access: proxy

11

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

isDefault: true
editable: true

dashboardProviders:
dashboardproviders.yaml:

apiVersion: 1
providers:

- name: 'default'
orgId: 1
folder: ''
type: file
disableDeletion: false
updateIntervalSeconds: 10
options:

path: /var/lib/grafana/dashboards
folderFromFilesStructure: true

dashboards:
default:

kubernetes-monitoring:
gnetId: 315
revision: 3
datasource: Prometheus

k8s-system-api-server:
url: https://raw.githubusercontent.com/dotdc/grafana-dashboards-kubernetes/master/dashboards/k8s-system-api-server.json

token: ''
k8s-system-coredns:

url: https://raw.githubusercontent.com/dotdc/grafana-dashboards-kubernetes/master/dashboards/k8s-system-coredns.json
token: ''

k8s-views-global:
url: https://raw.githubusercontent.com/dotdc/grafana-dashboards-kubernetes/master/dashboards/k8s-views-global.json

token: ''
k8s-views-namespaces:

url: https://raw.githubusercontent.com/dotdc/grafana-dashboards-kubernetes/master/dashboards/k8s-views-namespaces.json

12

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

token: ''
k8s-views-nodes:

url: https://raw.githubusercontent.com/dotdc/grafana-dashboards-kubernetes/master/dashboards/k8s-views-nodes.json
token: ''

k8s-views-pods:
url: https://raw.githubusercontent.com/dotdc/grafana-dashboards-kubernetes/master/dashboards/k8s-views-pods.json

token: ''
service:

type: NodePort
nodePort: 31001

Figure 4 Grafana Kubernetes dashboard

13

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

2.2. Metrics
This following chapter contains the metrics already implemented and available in thePrometheus database. Additionally, a set of potential metric candidates are presentedin the chapter 2.5.1 to share them with the partners and to decide which metriccandidates could be interesting to be implemented.

2.2.1. CPU
The following CPU related metrics have already been implemented. Monitoring CPUusage of nodes helps optimize resource allocation and identify performancebottlenecks.

 Cluster CPU Usage: The current usage of the CPUs of the whole cluster. Thecluster CPU usage metric is a percent value (0% to 100%). The metric iscalculated by dividing the sum of the current used CPU resources by the sum ofthe current free CPU resources in the cluster. The metric englobes all the nodesrunning in the cluster and is a metric to get a quick overview on the current CPUusage on the whole cluster. Once identified a possible bottleneck, a moredetailed analysis can be done using the more detailed metrics.
Query:

sum (rate (container_cpu_usage_seconds_total {id="/",kubernetes_io_hostname = ~"^.*$"}[1m])) / sum (machine_cpu_cores{ kubernetes_io_hostname =~"^.*$"}) * 100

 Containers CPU Usage: The current CPU usage of each of the Containers. TheContainer’s CPU usage metric is a percentage value whose maximum valuedepends on the number of cores assigned to the Container (0% to x00% beingx the number of cores). The metric is calculated by adding up the current CPUusage value of the Container for each of the cores assigned to the Container.
Query:

sum (rate (container_cpu_usage_seconds_total{image!="",name!~"^k8s_.*", kubernetes_io_hostname =~"^.*$"}[1m]))by (kubernetes_io_hostname, name, image)

 Processes CPU Usage: The current usage of the CPUs by each of theprocesses. The process CPU usage metric is a percentage value whosemaximum value depends on the number of cores assigned to the process (0%to x00% being x the number of cores). The metric is calculated by adding upthe current CPU usage value of the process for each of the cores assigned to theprocess.
Query:

sum (rate (container_cpu_usage_seconds_total {id!="/",kubernetes_io_hostname = ~"^.*$" }[1m])) by (id)

14

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

 PODs CPU Usage: The current CPU usage of each of the Kubernetes PODs. ThePODs CPU usage metric is a percentage value whose maximum value dependson the number of cores assigned to the Kubernetes POD (0% to x00% being xthe number of cores). The metric is calculated by adding up the current CPUusage value of the POD for each of the cores assigned to the POD.

Query:
sum (rate (container_cpu_usage_seconds_total {image!="",name=~"^k8s_.*", kubernetes_io_hostname =~"^.*$"}[1m])) by(pod_name)

 System Services CPU Usage:The current CPU usage of the system services.The System Services CPU usage metric is a percentage value whose maximumvalue depends on the number of cores used by each of the system services (0%to x00% being x the number of cores). The metric is calculated by adding upthe current CPU usage value of each of the System Services.
Query:

sum (rate (container_cpu_usage_seconds_total{systemd_service_name!="", kubernetes_io_hostname=~"^.*$"}[1m])) by(systemd_service_name)

 Namespace CPU Usage: The current CPU usage of a Kubernetes namespace.The namespace CPU usage metric is a percentage value whose maximum valuedepends on the number of cores used by each of the entities executed in thisnamespace (0% to x00% being x the number of cores). The metric is calculatedby adding up the current CPU usage value of each of the entities assigned to thenamespace. This metric can used to obtain the CPU usage of an applicationwhich is executed on the cluster. For this all entities composing the applicationneeds to be assigned to the same namespace.

2.2.2. Memory
The following memory related metrics have already been implemented. Trackingmemory usage and availability of nodes aids in efficient resource allocation andcapacity planning.

 Cluster Memory Usage: The current usage of memory of the whole cluster.The cluster memory usage metric is a percentage value (0% to 100%). Themetric is calculated by dividing the sum of the current used memory by the sumof the current free memory in the cluster. The metric englobes all the nodesrunning in the cluster and is a metric to get a quick overview on the currentmemory usage on the whole cluster. Once identified a possible bottleneck, amore detailed analysis can be done using the more detailed metrics.

15

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

Query:
sum (container_memory_working_set_bytes{id="/",kubernetes_io_hostname=~"^.*$"}) / sum(machine_memory_bytes{kubernetes_io_hostname=~"^.*$"}) * 100

 Containers Memory Usage: The current usage of memory in each of thecontainers. The container memory usage metric measures the number of bytesof main memory used by each container. The metric englobes all the containersexisting in the cluster and provides a usage value for each of them.
Query:

sum (container_memory_working_set_bytes {image!="",name!~"^k8s_.*",kubernetes_io_hostname =~"^.*$"}) by (kubernetes_io_hostname, name,image)

 Processes Memory Usage: The current usage of memory by each of theprocesses. The processes memory usage metric measures the number of bytesof main memory used by each process. The metric englobes all the processesrunning on the cluster and provides a usage value for each of them.
Query:

sum (container_memory_working_set_bytes{id!="/",kubernetes_io_hostname=~"^.*$"}) by (id)

 Pods Memory Usage: The current usage of memory by each of the KubernetesPODs. The PODs memory usage metric measures the number of bytes of mainmemory used by each Kubernetes POD. The metric englobes all the PODsrunning on the cluster and provides a usage value for each of them.
Query:

sum (container_memory_working_set_bytes {image!="",name=~"^k8s_.*",kubernetes_io_hostname=~"^.*$"}) by (pod_name)

 System Services Memory Usage: The current memory usage of the systemservices on the nodes. The system services memory usage metric measures thenumber of bytes of main memory used by each of the system services. Themetric englobes all the system services running on the cluster and provides ausage value for each of them.
Query:

sum (rate (container_cpu_usage_seconds_total{systemd_service_name!="", kubernetes_io_hostname =~"^.*$"}[1m])) by(systemd_service_name)

16

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

 Namespace Memory Usage: The current memory usage of a Kubernetesnamespace. The namespace memory usage metric measures the number ofbytes of main memory used by each of the entities executed in a namespace.The metric is calculated by adding up the current memory usage of each of theentities assigned to the namespace. This metric can used to obtain the memoryusage of an application which is executed on the cluster. For this all entitiescomposing the application needs to be assigned to the same namespace.
Query:

sum (container_memory_working_set_bytes {container!="",kubernetes_io_hostname=~"^.*$"}) by (namespace)

2.2.3. Networking
The following network related metrics have already been implemented. Monitoringnetwork traffic and throughput between nodes helps optimize data transfer andidentify network-related issues.

 Cluster Network I/O Pressure: The current amount of incoming and outgoingnetwork traffic. The cluster network I/O pressure metric measures the totalnumber of bytes per second transferred through the network by the applicationsexecuted on the cluster.
Query:

sum (rate (container_network_receive_bytes_total{kubernetes_io_hostname=~"^.*$" }[1m]))

sum (rate (container_network_transmit_bytes_total{kubernetes_io_hostname=~"^.*$"} [1m]))

 Containers Network I/O Pressure: The current network usage of each ofthe containers. The containers network I/O pressure metric measures thenumber of bytes per second transferred through the network by each of thecontainers executed on the cluster.
Query:

sum (rate(container_network_receive_bytes_total{image!="",name!~"^k8s_.*",kubernetes_io_hostname=~"^.*$"}[1m])) by (kubernetes_io_hostname,name, image)
- sum (rate(container_network_transmit_bytes_total{image!="",name!~"^k8s_.*",kubernetes_io_hostname=~"^.*$"}[1m])) by (kubernetes_io_hostname,name, image)

17

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

 Processes Network I/O Pressure: The current network usage of each of theprocesses. The processes network I/O pressure metric measures the number ofbytes per second transferred through the network by each of the processesexecuted on the cluster.
Query:

sum (rate (container_network_receive_bytes_total{id!="/",kubernetes_io_hostname =~"^.*$"}[1m])) by (id)
- sum (rate (container_network_transmit_bytes_total{id!="/",kubernetes_io_hostname =~"^.*$"}[1m])) by (id)

 Pods Network I/O Pressure:The current network usage of each of the PODs.The PODs network I/O pressure metric measures the number of bytes persecond transferred through the network by each of the Kubernetes PODsexecuted on the cluster.
Query:

sum (rate(container_network_receive_bytes_total{image!="",name=~"^k8s_.*",kubernetes_io_hostname=~"^.*$"}[1m])) by (pod_name)
sum (rate(container_network_transmit_bytes_total{image!="",name=~"^k8s_.*",kubernetes_io_hostname=~"^.*$"}[1m])) by (pod_name)

 Namespace Networks I/O Pressure: The current network usage of aKubernetes namespace. The namespace network usage metric measures thenumber of incoming and outgoing bytes per second transferred over thenetwork by each of the entities executed in a namespace. The metric iscalculated by adding up the current bytes transferred by each of the entitiesassigned to the namespace. This metric can used to obtain the current networkusage of an application which is executed on the cluster. For this all entitiescomposing the application needs to be assigned to the same namespace.
Query:

sum (rate(container_network_receive_bytes_total{container!="",name=~"^k8s_.*",kubernetes_io_hostname=~"^.*$"}[1m])) by (namespace)
sum (rate(container_network_transmit_bytes_total{container!="",name=~"^k8s_.*",kubernetes_io_hostname=~"^.*$"}[1m])) by (namespace)

18

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

2.2.4. Storage
The following storage related metrics have already been implemented. Keeping trackof storage usage on nodes ensures efficient allocation and helps identify capacityconstraints.The following storage related metrics have already been implemented.Keeping track of storage usage on nodes ensures efficient allocation and helps identifycapacity constraints.

 Node disk throughput: The current throughput of the filesystem on nodelevel. The node disk throughput metric measures the number of bytes persecond read or written to the disk by each of the nodes executed of the cluster.
Query:

sum (rate (node_disk_io_now{}[$__rate_interval])) by (node)
 Namespace disk throughput: The accumulated throughput on namespacelevel. The namespace disk throughput metric measures the number of bytesper read or written to the disk by each of the entities executed in a namespace.The metric is calculated by adding up the current bytes read or written by eachof the entities assigned to the namespace. This metric can used to obtain thecurrent disk throughput of an application which is executed on the cluster. Forthis all entities composing the application needs to be assigned to the samenamespace.

Query:
sum (rate (node_disk_io_now{}[$__rate_interval])) by (namespace)

2.2.5. System
The following system related metrics have already been implemented. The systemneeds to be dynamic to adapt its deployment to these infrastructure availabilitychanges; therefore, it is important to monitor the available compute nodes.

 Available compute nodes: The current number of compute nodes availableon the cluster. This metric changes for example, when there are infrastructureavailability changes on the cluster or new infrastructure is added.
Query:

count (count by (node) (kube_node_info{cluster=""}))

2.3. Validation of requirements
This chapter will review the requirements defined in deliverable D3.1, section 4.“Monitoring requirements” to validate that they have been considered during thedevelopment of the architecture of the monitoring system for the EXTRACT platform.

19

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

According to deliverable D3.1, the main objective of the monitoring system is tocollect, process, store, and report information about the operation, the status, and theresources of the compute continuum. This information will be used by the orchestratorand other EXTRACT applications to optimize performance, availability, scalability,security, and management of the compute continuum and associated applications.
The following table shows the list of the previously defined requirements and the toolsthat have been used to fulfill them, as well as an update of the implementation status.More detailed information on the requirement and why it is necessary for the systemcan be found in section 4 of deliverable D3.1.

Monitoring requirements
Requirement Tool used to fulfill the requirement Implementationstatus
Near real-timemonitoring Prometheus Implemented
Flexibility andextensibility Prometheus + Open Telemetry Implemented
Integration API Not Implemented
Historical Data Prometheus (time series database) Implemented
Scalability andefficiency Related to architecture Implemented
Reliability Related to architecture Implemented
Security andcompliance Prometheus Implemented

Table 2. Monitoring requirements and tools

On the other hand, the requirements of the metrics to be met by the monitoring agentswere also defined. The following table shows the list of the metric requirements, aswell as an update of the implementation status. More detailed information on therequirement and why it is necessary for the system can be found in section 4.2. ofdeliverable D3.1.
Metric requirements

Requirement Tool used to fulfill the requirement Implementationstatus
Metrics related to the nodes and the infrastructure of the compute continuum:
Availablenodes kube-state-metrics

metrics-server

Implemented
CPU usage Implemented
Memory usage Implemented
Network Implemented

20

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

Throughput
StorageUtilization Partially Implemented.Throughput relatedmetrics have beenimplemented. Storageusage metrics are stillpending to beimplemented.
Node Health

TBD
Not Implemented

WorkloadDistribution Not Implemented
ResourceEfficiency Not Implemented
Metrics related to the applications and systems deployed:
ApplicationAvailability

TBD
Not Implemented

ApplicationResponseTime
Not Implemented

ContainerMetrics

kube-state-metrics
metrics-server

Implemented
NetworkThroughput Implemented
StorageUtilization Partially Implemented.Throughput relatedmetrics have beenimplemented. Storageusage metrics are stillpending to beimplemented.
Workload-specificMetrics

TBD

Not Implemented

Service Health Not Implemented
Node Health Not Implemented
WorkloadDistribution Not Implemented
ResourceEfficiency Not Implemented

Table 3. Metric requirements and tools

21

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

3. Data-driven Workflow Deployment andScheduling
3.1. Orchestrator architecture

As stated in D3.1, the EXTRACT platform will be composed of two orchestration layers:the application layer and the infrastructure layer. The application layer is in charge ofscheduling the data-driven workflow and the infrastructure layer of its deployment.
In the EXTRACT context, the application layer is implemented with COMPSs, which isin charge of creating the Task Dependency Graph and executing the tasks of theworkflows in its workers. On the other hand, the infrastructure layer is implementedwith Kubernetes and is in charge of deploying COMPSs as Pods and ensuring the fullworkflow execution (e.g. Pods restarting) and allowing for Pods communication amongthem.
It is worth mentioning that both, COMPSs and Kubernetes, have their own schedulerand orchestrator, and it may be easy to confuse the terms. In order to have a clearervocabulary, we propose the next definitions:

 Application scheduler: The COMPSs scheduler that decides in which node atask of the TDG will be executed, taking into account network and data-locality. The default COMPSs scheduler ises.bsc.compss.scheduler.orderstrict.fifo.FifoTS, that prioritizes task generationorder in FIFO.

 Application orchestrator: The COMPSs orchestrator that is in charge ofoffloading a task to the decided COMPSs worker.

 Infrastructure scheduler: The Kubernetes scheduler that will determinewhere the COMPSs master and workers are deployed. The default scheduler iskube-sched and affinity and anti-affinity rules are used such that every workeris deployed in a different node.

22

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

 Infrastructure orchestrator: The Kubernetes orchestrator is a broader termthat encompasses the entire Kubernetes platform, which is responsible formanaging and coordinating the containerized workloads across the continuum. Monitoring: The monitoring layer described in detail in the previous sections,plays a pivotal role in providing real-time insights into the system's health andperformance. It collects metrics related to resource utilization, applicationperformance, and system state, which are then fed back to the scheduler. Thisfeedback loop enables to adjust the scheduling strategies dynamically,prioritizing tasks based on the current operational context and resourceavailability.

3.2. Technology description
3.2.1. Kubernetes

Kubernetes is a commonly used open-source platform designed for automating thedeployment, scaling, and management of containerized applications. It groupscontainers that make up an application into logical units for easy management anddiscovery. As a highly flexible container orchestration tool, it enables the efficienthandling of workloads by using the concept of pods, which are the smallest deployableunits that can be created and managed in Kubernetes.

Figure 5 Orchestration Architecture Overview

23

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

The integration of Kubernetes clusters with a global, multi-clusterorchestrator/scheduler for EXTRACT such as COMPSs poses a conflict for thescheduling of tasks. Naturally, a task requires resources such asCPU/GPU/memory/storage/network to be available for it out of a Kubernetes clusterwhen the task needs to run. Thus, the task needs to to be scheduled for execution inthe cluster. On one hand, COMPSs needs to be the scheduler of the task because itorchestrates the overall workflow that the task belongs to and may have sensitivetiming constraints, as discussed in D3.1 []. On the other hand, a Kubernetes cluster isequipped with a native scheduler [] of its own, which facilitates usage of the cluster’sentire resource pool, as well as enabling additional capabilities such as high-availabilityetc.
As both schedulers, COMPSs and Kubernetes scheduler, contend for the same pool ofresources, there need to be a consistent strategy that allows both of them to worktogether, while avoiding conflicting decisions. In addition, EXTRACT requirements ofreal-time execution need to be observed.
There are two common strategies that have been considered for resolving the aboveissue. One is delegation, in which COMPSs serves as a top-level orchestrator andscheduler. When COMPSs needs to execute a task in a particular cluster, it delegatesthe further scheduling and execution of the task to that cluster, by sending the task toexecute as a Kubernetes resource – e.g., a pod, or a Knative Service request []. Fora scheduling decision, COMPSs considers the free resource capacities of the entirecluster.
A second common strategy that was considered for scheduler cooperation ispartitioning. The cluster’s resource pool is split into partitions, and each partition isgoverned by a separate scheduler. In that case, the task is sent by COMPSs to thepartition that it controls, so the task may assume any form that fits the design of theCOMPSs execution. For a scheduling decision, COMPSs considers the free resourcecapacities only within its partition.
There are pros and cons to both strategies above. In the process of arriving at a designdecision, we consider the following key aspects:

1. Flexibility – how much work is needed to accommodate changes in thecluster size and capacity.2. Timing overhead – how much extra time (beyond net task execution) isneeded to get a task executed in a given cluster.3. Resource overhead – how much extra resources (beyond what the taskrequires) are needed to get a task executed in a given cluster.4. Interference – how much may regular Kubernetes operation interferewith the EXTRACT scheduling and execution.
Note that isolation, while being a common property of containers, is not considered.This is because EXTRACT is not about multi-tenancy. In other words, an EXTRACTapplication is assumed to be a single tenancy domain, using the architectureexclusively for its own purposes.

24

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

We now consider delegation in light of the above aspects. Flexibility is a clearadvantage, since the entire cluster always remains a single worker for COMPSs,capable of executing concurrent tasks up to the cluster’s capacity, regardless ofchanges. There is some limitation here, given that resources are split across multiplenodes, but this is typically an issue at high load and can be mitigated. On the otherhand, the other aspects are disadvantages. Timing overhead: spawning tasks as podscan be slow due to e.g., container warm-up, which can be mitigated to a degree bycluster tuning or by using Knative Serving with minimal pool size. Similarly, containermay pose significant resource overhead beyond a task’s dependency due to mandatoryOS and platform libraries. Last, invoking operations on the Kubernetes clusters notthrough COMPSs may clearly affect the free resource of the clusters, causinginterference - possible scheduling delays and/or failures.
When considering partitioning with relation to the above aspects, we see a differentpicture. It clearly is more complex in terms of flexibility since the partition needs to beredefined whenever nodes are added or removed from the cluster. One simple way ofimplementing partitioning is setting up a single long-running COMPSs worker pod ineach Kubernetes node, and then sending the task to execute as a thread or a processwithin that pod. Resource and timing overheads can be quite minimal in this strategy(process or thread overhead). Last, interference is also minimal, since the worker podis pre-allocated with capacity, so any cluster operation affects outside the pod.
To conclude this discussion, it is now clear that partitioning is the superior strategy formeeting EXTRACT requirements. It is therefore selected for use going forward withEXTRACT implementation. The actual implementation is as suggested above – a singleworker pod for COMPSs in each Kubernetes node. Further services or components inthe cluster that need to be invoked as part of the task execution should also be pre-allocated to minimize interference to a desired degree.

3.2.2. COMPSs
COMPSs is a task-based parallel computing model developed by BSC, that efficientlyschedules tasks across the entire compute continuum. COMPSs specializes inoptimizing task execution by dynamically scheduling and placing tasks based on datalocality and computing resources, thereby enhancing performance and scalability.COMPSs was already introduced with a more detailed description in D3.1. Furthermore,in D4.2, we provide an extensive explanation on how COMPSs is being used in a firstMVP in which it acts as the application orchestrator.

3.2.3. Nuvla
Nuvla is an edge and a container management platform built upon open-sourcesoftware and open standards. The Nuvla platform allows you to configure any numberof Container-as-a-Service (CaaS) (e.g. Docker Swarm, Kubernetes) endpoints. Thismeans you can mix and match public clouds, private clouds and infrastructure, as wellas edge devices.

25

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

The Nuvla platform exposes a powerful REST API. This API allows developers tointegrate Nuvla into third-party systems, script it and even use it as Infrastructure ascode (IaC). This enables a simple and effective edge-to-multi-cloud solution. Theplatform is application centric, hardware agnostic, cloud neutral and container native.This allows end users to manage any containerized application across a fleet of edgedevices and container-orchestration engines.
In addition, Nuvla supports a data management platform that leverages the positiveattributes of S3-based services and introduces a comprehensive global managementsystem for metadata. The goal is to enhance the efficiency of search functionalitiesacross different service providers. In terms of implementation, the model consists ofthree core Nuvla resources:
1. data-object: This resource acts as a proxy for data stored in an S3 bucket/objectfrom a specific provider. It manages the lifecycle of S3 objects, simplifying dataupload and download processes.2. data-record: This resource allows users to add additional, user-specifiedmetadata for an object. Enabling the attachment of rich, domain-specificmetadata to objects enhances the precision of searching for relevant data.3. data-set: This resource defines dynamic collections of data-object and/or data-record resources through filters. Administrators, managers, or users can definethese collections, providing a flexible and customizable approach to dataorganization.

Collectively, these resources establish a versatile data management frameworkapplicable to a broad range of use cases. The typical workflow involves creating a data-object (implicitly creating the S3 object), optionally adding metadata using a data-record object, and finally, finding and using the relevant data-object resourcesincluded in a data set.
Nuvla facilitates the "using" element by binding data types to user applications capableof processing the data, offering seamless integration between data management andapplication utilization.

3.3. Interaction with Monitoring Platform
This section outlines how the metrics collected by Prometheus will be utilized to informthe system and refine scheduling decisions, thereby enhancing the efficiency andeffectiveness of resource utilization across the continuum.
The array of metric candidates discussed in section 2.2 seem a very good place to startin order to use them in the implementation of a scheduling algorithm.
However, the specific set of metrics that will be utilized falls outside of the scope of theMVP, and as a result, the concrete set of metrics and their weights in the decision-making will be selected during the next phase of the project. In any case, COMPSs canleverage different schedulers at this time. Currently, the version we are using for ourpreliminary tests, does not integrate in its logic the hereby presented metrics, butrather builds on heuristics. These heuristics build a static graph, which means that norun-time aspects are considered in order to dynamically modify the workflowdeployment.

26

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

To that end, in Extract we want to leverage all the available information that we cangather from the system and its resources, so that the scheduler has the ability to scaleboth horizontally and vertically in a multitenant environment such as our platform’s,meeting the most stringent application demands and striving for the most optimalutilization and non-functional requirements (e.g. timing constraints).
As stated in Section 2.1.3, there are two approaches by which the Prometheus servercan collect metrics. COMPSs has been adapted such that an application proactivelysends (push policy) its metrics to a designated Prometheus Pushgateway at runtimethrough the COMPSs framework.
Despite the availability of numerous metrics, the only one currently being sentmeasures the frequency with which tasks fail to complete within their expectedexecution time. This expected execution time, determined through either application-specific profiling or dynamically during the runtime of the application, incorporates amargin to counteract the potential temporal variability in data packet delivery acrosscomputer networks and telecommunications systems, commonly known as jitter, aswell as variability in execution time attributable to the computational load of a task ona specific node. Upon the COMPSs framework pushing metrics to the Pushgateway, itbecomes the Pushgateway's responsibility to make these metrics accessible over theHTTP protocol for subsequent retrieval by the Prometheus Server in the "pullapproach."

4. Next Steps
The following chapter identifies the next steps and future improvements to what hasalready been implemented.

4.1. Prometheus Service Discovery
Service discovery in Prometheus provides the capability to automatically identify andmonitor services as they dynamically appear or disappear within a system. This featureenables Prometheus to adapt seamlessly to changes in the environment, ensuringcontinuous monitoring of services. Furthermore, this feature is particularly useful indynamic environments such as within a Kubernetes architecture.
To solve this challenge, Prometheus supports different service discovery mechanisms,although the most used are File-Based Service Discovery (file_sd) and HTTP ServiceDiscovery (http_sd). Both methods are very similar. The main difference is that withfile_sd, a simple modification of the file will notify Prometheus, while http_sd will checkchanges periodically. With both methods, it will not be necessary to restart thePrometheus server to start monitoring new services.
In addition, since the Extract platform consists of a Kubernetes architecture, there isa specific service discovery tool, native to Kubernetes, for discovering and monitoringnew services running in a cluster. Therefore, it will be possible to also use theKubernetes API to discover new pods and services.

27

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

4.2. Metric Candidates
In this section we present a set of metric candidates which could be interesting for theproject but have not been implemented yet. The following versions will discuss this listwith the partners and decide which metrics should be implemented.

 CPU Quota: The CPU consumption limit for an application. Memory Quota: The memory consumption limit for an application. Disk space availability: Metrics regarding the available storage space. Node/Application health: Metrics regarding the current health status of thecomputing nodes and/or applications. Application response time: Metrics regarding the response time of theapplications. Networking dropped packages: The amount of dropped packages inincoming and outgoing network traffic.
It should be remarked that most of these metrics can be obtained on an applicationlevel or on a physical node level. Whenever possible, both metrics will be provided.For example, health metrics could, on one side, reflect the current application healthstate (Application up/down) and, on the other side, could reflect the current state ofthe actual physical nodes available in the system (Node up/down).
There could be relations between both metrics. But it is not mandatory. For example,a fault-tolerant application could be healthy even when there are one or more physicalnodes in an unhealthy state.

4.3. Exporter Candidates
In this section we present a set of metrics exporters which could be useful to gatheradditional metrics from the Extract platform performance.

 Power consumption exporter: a set of metrics to measure the powerconsumption of the system. We will analyze using Scaphandre software tocollect this type of information [6]. DCGM-Exporter: an exporter dedicated to monitor the health and performancemetrics of NVIDIA GPUs resources. By integrating with Prometheus, it allows forcomprehensive monitoring and optimization of GPU usage within the Extractplatform.
The addition of these new exporters represents a significant enhancement to theExtract platform's monitoring infrastructure.

4.4. Monitoring API
Currently, the orchestration obtains the data needed from the monitoring architectureusing the Standard API offered by Prometheus, the PromQL Query Language. Whilethis approach is perfectly functional, it keeps both the monitoring and orchestrationtightly bound to each other, and changing any of them requires a high degree ofmodification in the other to accommodate for the change.

28

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

A loosely coupled relationship between the two will be implemented through a generalmonitoring API. This will greatly reduce the work effort needed to adapt one of themif the other gets replaced.

4.5. Scheduling algorithms
The current scheduling algorithm does not consider run-time information. Differentalternatives will be studied to improve this approach that are based on the monitoringarchitecture data through the aforementioned API. Some of the alternatives that willbe considered are:

 Deterministic algorithm: an algorithm in which the set of metrics to beconsidered are selected, and via some weighing and priorization, a schedulingalgorithm is built. Heuristics-based algorithm: we would like to explore how certain knowledgeof the system could be incorporated to this approach to fine-grain tune it. AI algorithm trained with the collected metrics: by providing a large testbench of collected metrics during different kind of applications executed in ourplatform, we could explore some training models and compare the results withsome of the other approaches.

5. Conclusion
This deliverable encompasses the description of the first release of the Data-drivenorchestration and monitoring platform, developed within Work Package 3 (WP3). Itmainly covers the tasks performed in two tasks of this work package: T3.2, related tothe deployment and scheduling of workflow steps such that various goals are optimizedin a holistic manner, and T3.3, focused on the development of a monitoringinfrastructure capable of gathering information related to the execution of data miningworkflows across the compute continuum for optimized orchestration and deploymentdecisions. In summary, the described development and integration of the first releasedemonstrates a coherent execution of Work Package 3 objectives, paving the way foroptimized workflow deployment and monitoring capabilities as explained in thepresented sections. Section 2 introduces the monitoring platform currently underdevelopment within the project's framework. After thoroughly analyzing which metricscould be the most valuable to serve as input for the orchestration algorithm, theselection of metrics that the monitoring platform will target are presented and brieflydescribed. Following this, an assessment of the specific requirements outlined indocument D3.1 is presented, in order to showcase that all the tools that have beenselected within this project can guarantee their fulfillment. Section 3 delves into theplanning and deployment of workflows. Initially, the orchestrator is described,unveiling the selected components and functionalities. Following this, a comprehensiveoverview of the technologies earmarked for deployment is provided. Then, theinteraction with the monitoring platform is meticulously detailed, outlining theseamless integration between the orchestrator and the monitoring infrastructure.

29

D3.2. Data-driven orchestration and monitoring (first release)Version 1.0

6. Acronyms and Abbreviations
- WP – Work Package- WPL – Work Package Leader

7. References
[1]"https://prometheus.io/".
[2]"https://github.com/kubernetes/kube-state-metrics".
[3]"https://github.com/kubernetes-sigs/metrics-server".
[4]"https://opentelemetry.io/".
[5]"https://grafana.com/".
[6]"https://github.com/hubblo-org/scaphandre".

