

D2.1 Data infrastructure and data

mining framework requirements
Version 1.0

Documentation Information

Contract Number 101093110

Project Website https://extract-project.eu/

Contratual Deadline 30.06.2023

Dissemination Level Public

Nature Report

Author SIX, URV, LRI, BSC, IKL, IBM, MATH

Contributors SIX, URV, LRI, BSC, IKL, IBM, MATH

Reviewer IBM

Keywords Requirement, data, infrastructure, mining

The EXTRACT Project has received funding from the European Union’s

Horizon Europe programme under grant agreement number 101093110.

https://extract-project.eu/

 1

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

Change Log

Version Description Change

V0.1 Defining ToC and requirements methodology

V0.2 Ready for review version

V0.3 IBM review

V1.0 BSC Final review

 2

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

Table of Contents
1. Executive Summary .. 4

2. Approach to requirements collection ... 4

3. User stories .. 6

3.1. US_1: PER dynamic emergency plans .. 6

3.2. US_2: TASKA ML workflow definition .. 7

3.3. US_3: Data storage .. 7

3.4. US_4: Metadata management .. 7

3.5. US_5: PER semantics approach .. 7

3.6. US_6: Data staging tool ... 8

3.7. US_7: Dynamic partitioning tool .. 9

3.8. US_8: Data Security ... 9

3.9. US_9: Data Privacy ... 9

3.10. US_10: Model and Computation Protection ... 10

4. Requirements ... 10

4.1. Data content and metadata layers ... 10

4.2. Semantic layer .. 12

4.3. Cloud/Edge data staging and integration with data mining frameworks..................................... 13

4.4. HPC and Big Data & AI frameworks .. 14

4.5. Data security and privacy... 14

5. Technologies proposal.. 16

5.1. Data content and metadata layer ... 16

5.1.1. Object Storage .. 16

5.1.2. Nuvla ... 17

5.1.3. InfluxDB ... 18

5.2. Semantic layer .. 20

5.3. Cloud/Edge data staging and integration with data mining frameworks ... 21

5.3.1. Lithops.. 21

5.3.2. Dynamic partitioning tool ... 22

5.4. HPC and Big Data & AI frameworks ... 23

5.4.1. Ray ... 23

5.4.2. COMPSs ... 24

5.4.3. ModelMesh .. 24

5.5. Data security and privacy ... 24

5.5.1. Data Privacy ... 24

 3

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

5.5.2. Data Security .. 24

5.5.3. Process and Model Protection .. 24

6. Conclusions ... 24

7. Acronyms and Abbreviations ... 24

8. References ... 24

 4

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

1. Executive Summary
The aim of this “Data infrastructure and data mining framework requirements”

deliverable is to provide a list of the requirements for the EXTRACT [1] data

infrastructure and data mining framework, and to derive a selection of technologies to

be used throughout the project.

Below is the list of the layers and focus areas which were used for the requirements

specification that all contribute to the overall data infrastructure and data mining

framework specification:

 Data content and metadata layers

 Semantic layer

 Cloud/Edge data staging, and the interconnection with data-mining frameworks

 HPC and AI & big data frameworks

 Data security and privacy

The specification of the collected requirements will be used to drive the work for the

other tasks in WP2 “Data Infrastructure and Data Mining Frameworks”.

The approach taken for requirements elicitation consists of the definition of the

thematic User Stories and then derivation of the corresponding system requirements
to support the functional and non-functional levels of the defined User Stories. The

User Stories describe on a high-level the desired properties and behaviour of the

system for users to be able to fulfil their required tasks around the data infrastructure
and data mining framework. The derived requirements directly correspond to providing

users with the functionalities they require from the data infrastructure and data mining

framework. A ranking of the requirements is also applied followed by the selection of

the technologies and tools that implement them.

The document is structured as follows. In section 2, we define the approach that was

used for the collection of the requirements. Then, section 3 lists the User Stories

identified as part of the user interactions with the data infrastructure and data mining
frameworks layer of EXTRACT. Section 4 derives system and software level functional

requirements covering all the layers and focus areas of the data infrastructure and

data mining framework that were reflected in the User Stories. In section 5 we select
technologies and tools to implement the identified requirements. The deliverable is

finalised by the conclusions in section 6.

2. Approach to requirements collection

To accomplish the requirement elicitation and provide an adequate number of

requirements, the MoSCoW [2] method is used. This method is based on application

of prioritization strategies in order to include only the most qualified requirements and
avoid an extremely abundant list of requirements. MoSCoW method classifies

requirements in four different premises:

 Must Have: mandatory requirements that add the main value to the product.

These requirements cannot be missed since they compose the product. An
example could be the security requirements that ensure the compliance of the

product.
 Should Have: not mandatory requirements but also add important value to the

product. These requirements have a similar impact as must have requirements,

 5

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

but they are not essential and can be rescheduled. An example could be
performance improvement.

 Could Have: not mandatory requirements, small impact or none. These

requirements represent non-core functionalities that are nice to have but far

from essential. An example could be progressive user interface.
 Will Not Have: not mandatory, requirements that are left to the backlog. These

requirements provide almost no impact for a specific release and will just fall

out.

In Figure 1, we can show the overall architecture of the software components in

EXTRACT platform, and the relationship among the different layers cited above and

the general architecture:

Figure 1: Data infrastructure and data-mining framework layers into software components

The requirements are organised in sections corresponding to the different layers that

interact with the data infrastructure of the EXTRACT platform, namely:

1. Data content and metadata layer
2. Semantic layer requirements
3. Cloud/Edge data staging layer and interconnection with data-mining

frameworks
4. HPC and AI & big data framework

5. Data security and privacy

Getting deeper into the data infrastructure and data-mining framework layers, figure

2 is useful to show the relationship between components:

 6

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

Figure 2: Data infrastructure and data-mining framework layers

Based on the requirements obtained, we follow with a collection of technologies to help

their fulfilment, as well as discussions on new developments to adapt them to

EXTRACT.

3. User stories
The user stories collected in this document will determine the requirements that the

proposed technologies must meet. User stories can be of two types:

 User-driven: they specify a functionality to be met, improvement, need, etc.
from the point of view of one of the end user personas of the use cases.

 Technology-driven: they are functionalities, improvements, proposals, etc.

that are to be fulfilled from a technical point of view.

3.1. US_1: PER dynamic emergency plans
As a Venice emergency controller, I would like to have dynamic emergency

plans issued to all current occupants of a hazard area within a time limit.

This story is narrowing the PER use-case from D1.1 to the data mining level. The

general use-case of PER includes dealing with collection of data from multiple sources,

generate and update (if necessary) the personal evacuation plan, and notify the user
via their phones. From the data infrastructure point of view the PER use case requires

the critical issues are on related on the collection. Curation, access the data mining

level, the core user story is the timely generation of the evacuation plans on the base
of the condition of the ground and updating them until occupants safely reach the

waiting area. These plans are intended to be generated by a machine learning model

based on Reinforcement Learning (RL). Given that, it is expected that some big-data

processing may be required, before and/or after the inference/training, all subject to

the same timing constraints.

 7

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

3.2. US_2: TASKA ML workflow definition
As a radio astronomer, I would like to define a workflow with ML models that

process my observation data under [real time] constraints.

This particular story is a reduction of several TASKA cases (A, C, D, E) to the data

mining level. For example, the general TASKA-A case, as described in D1.1

(UnDysPuted system), involves reducing the incoming stream of raw observation data
into a set of non-overlapping sequences, each representing a phenomenon at varying

timescales. The TASKA-C case builds on TASKA-A and adds additional processing steps

at large scale such as rebinning, calibration and image construction. TASKA-D
leverages another ML model for identification of faint sources. TASKA-E adds beyond

TASKA-C additional large-scale processing of dynamic spectrum extraction

(DynSpecMS). At the data mining level, these boil down to defining a time-constraint
workflow that includes serving one or more models (e.g., phenomena detection model,

faint source detection model) and pre/post big-data computations at a rate that

matches the incoming data rate, all subject to the same timing constraints. Unlike the

PER use-case, however, these workflows are expected to vary per each astronomer’s

requirements.

3.3. US_3: Data storage
As an EXTRACT application developer, I will need to store huge amounts of

data (extreme data).

Extreme data refers to large volumes of information that need to be managed and

stored efficiently. The users’ data sets can be extremely large, ranging from terabytes

to petabytes and even exabytes of information.

Choosing the right data storage system is critical to ensure that information can be
stored, accessed, and processed quickly and efficiently. The objective is to select the

technology(s) most appropriate to the needs and integrate it into the EXTRACT

platform.

3.4. US_4: Metadata management
As EXTRACT app developer, I can generate, store, query, and share metadata

about my data sets at scale.

App developers can generate and store metadata about their data in a meta-data
catalogue, that provides schema-free registration of the metadata records, allowing

users to express any required structured information about the data. Users can

remotely query the meta-data catalogue to discover the meta-data records. Users can

share the meta-data records with other users.

Metadata will play an important role in the EXTRACT platform, enriching users'

knowledge of the data stored on the platform.

3.5. US_5: PER semantics approach
As an EXTRACT urban application developer, I would like to have a single
service of information that represents the entire state of the city and its

inhabitants, in a timely and scalable fashion.

The semantic approach to Urban Digital Twin allows for the integration and
harmonization of heterogeneous urban data by providing a common vocabulary, data

 8

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

models, and ontologies. This facilitates a holistic view of the city, enabling seamless

data exchange, integration, and analysis within the digital twin.

In particular it supports:

 Contextual Understanding of Urban Data
 Interoperability and Collaboration
 Real-Time Monitoring and Simulation
 Urban Knowledge Discovery
 Citizen Engagement and Empowerment

The general use-case of PER includes dealing with collection of heterogeneous data

using ETL process to extract data from disparate sources, transform it into a common

format (e.g., RDF), and load it into the Knowledge Base.

The semantic approach allows semantic inference on the data according to the

ontology adopted. Moreover, it supports a meaningful continuous urban status

retrieval that will be exploited by the ML module to generate the personalized
evacuation paths at time of hazard and notifying the occupant’s phones. Such

semantic-aware information retrieval should be timely and continuous until occupants

safely reach the waiting area. These paths are intended to be generated by a machine

learning model based on Reinforcement Learning (RL). Given that, it is expected that
some big-data processing may be required, before and/or after the inference/training,

all subject to the same timing constraints.

3.6. US_6: Data staging tool
As an EXTRACT application developer, I would like to be able to define data
preparation steps that should be executed automatically and at scale before

the data mining operations.

When we talk about "Data Staging", we refer to a process in which data is collected,

prepared and transformed for its analysis. This requires a specific technology to carry
out this process effectively.

The first step in the data staging process involves loading the data from a storage

system. This can be a database, flat file, cloud source, or other data source. The
technology choose must be able to efficiently connect to and extract data from these

sources.

Once the data has been loaded, certain transformations must be performed to prepare
it properly. These transformations can include data cleansing, integration of different

data sets, format normalization, data aggregation, and other similar operations. The

technology selected should have the capabilities to perform these transformations

efficiently and flexibly.
Once the data has been transformed and prepared, the next step is to deliver it to the

data mining frameworks. Data-processing workflows may include machine learning

algorithms, statistical analysis, natural language processing, or other techniques to
discover patterns, make predictions, and extract insights from data. The technology

you choose must have the ability to provide an interface or a way to connect to these

data mining methods so that the prepared data can be used in the analysis.
In short, the technology to select and improve must have the ability to load data from

the storage system, perform necessary transformations to prepare the data, and

efficiently deliver it to data mining methods.

 9

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

3.7. US_7: Dynamic partitioning tool
As an EXTRACT application developer, I would like to have my data staging

operations automatically optimized for performance at scale.

Traditionally, if we have several processes working in parallel performing data staging

on a very large file, all these processes will have to download the entire file of interest,

load said file into their memory, and then statically partition these files and keep the

block, discarding the other data. This has two major drawbacks:

 Download in each worker the entire file in its entirety (+ latency, + data travel)
 Load the entire file into the worker's memory (+ memory usage)

We want to optimize the data load in each of the workers, in such a way that each
worker only downloads the data that is strictly necessary to process its block (instead

of downloading the entire file). This optimization will mean an improvement in

processing speed and a decrease in necessary resources and unnecessary workload.

Since EXTRACT use cases needs lo load huge amount of data from storage, dynamic

partitioning gains importance and necessity into the project.

3.8. US_8: Data Security
As an EXTRACT application developer or security owner, I would like to

protect secret information from being exposed to unauthorized entities

(externally or internally) while avoiding information tampering.

During all the life of data within EXTRACT, data collection, staging, processing and

analysis, the data protection requirements should be met, especially for the
confidential data. Although many solutions are available, in EXTRACT we will deal with

extreme data, to this end we need to choose the technologies with the best

performance and which give more accurate results. During the project we will conduct

experiments to benchmark the available technologies, however we will need the data
characteristic whenever available to include in our experiments (e.g., Data Volume

and Frequency).

3.9. US_9: Data Privacy
As an EXTRACT application developer or security owner, I would like to allow

the appropriate anonymization/de-identification of sensitive information.

Together with data security, data privacy requirements also should be met, and we

can distinguish this user story from the previous one (Data Security) by the

stockholders, technologies and the data in question. Data Privacy do not include
confidential data; however it is concerning private data which exposing it is not the

problem but connecting it to a person or an entity is. We want to implement the

appropriate anonymization/de-identification techniques for data obfuscation with the
aim to hide private identities as well as other Personally identifiable information (PII)

or sensitive information, to secure data storage and data sharing and to properly

handle the user consent.

 10

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

3.10. US_10: Model and Computation Protection
As an EXTRACT ML developer / security owner, I would like to have my

models protected w.r.t. data privacy and security.

Models are not completely defensible for privacy and security. Therefore, we will

address the models’ security also according to the use (internal or external to the

EXTRACT environment) of data for ML. In addition, the design of the security solutions
needed to improve the security of the Machine Learning models and applications

against the adversarial threats of Evasion, Poisoning, Extraction, and Inference will be

addressed.

4. Requirements

4.1. Data content and metadata layers

ID Requirement

name

Requirement description Priority User

Story

ID

CM_1 High availability We need the data storage

system to offer high availability

of the same, being able to access
them at the moment in which it

is required.

MUST US_3

CM_2 Scalability The storage system is required

to be scalable, since handling
extreme data will require having

to record huge amounts of data.

MUST US_3

CM_3 Durability It must be guaranteed that there
will be no data loss, that is, that

the stored data will remain

forever in the system unless the

user decides to explicitly delete
it.

MUST US_3

CM_4 Storage resource

efficiency

Efficient use of available storage

resources.

SHOULD US_3

CM_5 Integration with
applications and

services

It is necessary that the chosen
storage system has integration

(compatible API) with the

frameworks that are going to be
used in EXTRACT.

MUST US_3

CM_6

Interoperability

across the

continuum

The data storage system must

be interoperable throughout the

entire continuum (Cloud, HPC
and Edge)

MUST US_3

CM_7 Record metadata

in the storage
system itself

Have the ability to record

metadata in the storage system
itself.

COULD US_3

CM_8 Regulatory

compliance and

security

It must be ensured that the

storage system complies with

regulations and specific safety

MUST US_3

 11

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

standards. The confidentiality
and integrity of the data must be

guaranteed.

CM_9 Meta-data

catalogue

EXTRACT MUST provide meta-

data catalogue with user-defined

schema.

MUST US_4

CM_10 Data discovery EXTRACT MUST allow data

discovery of the data via meta-

data catalogue based on the

characteristics of the user data.

MUST US_4

CM_11 Meta-data sharing EXTRACT SHOULD allow meta-

data to be shared among users.

SHOULD US_4

CM_12 Authn/z access to

meta-data

EXTRACT MUST provide
authentication and authorization

mechanism for accessing meta-

data.

MUST US_4

CM_13 RESTful API for

meta-data access

EXTRACT MUST provide meta-

data handling service via

RESTful API.

MUST US_4

CM_14 Programmatic
access to meta-

data catalogue

EXTRACT SHOULD provide user
application developers with

libraries for accessing meta-data

catalogue via its API.

SHOULD US_4

CM_15 High availability of
meta-data

catalogue

EXTRACT meta-data catalogue
MUST provide highly available

service.

MUST US_4

CM_16 Scalability of
meta-data

catalogue

EXTRACT meta-data catalogue
MUST be scalable, since handling

extreme data requires having to

catalogue large amounts of data.

MUST US_4

CM_17 Durability of

meta-data

catalogue

EXTRACT meta-data catalogue

MUST guarantee that there will

be no meta-data loss, that is,

that the stored meta-data will
remain forever in the system

unless the user decides to

explicitly delete it.

MUST US_4

CM_18 Secure meta-data

catalogue

EXTRACT meta-data catalogue

MUST provide users secure

access to the meta-data entries

store in it.

MUST US_4

CM_19 Temporal-based

information

retrieval

EXTRACT MUST support

data/information retrieval on

temporal logic basis

MUST US_3

 12

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

4.2. Semantic layer

ID Requirement

name

Requirement description Priority User

Story

ID

SL_1 Integration of

Data across

Disparate Data

Sources

It must integrate data across

different data sources using

ontology as a common data
model and SQL and/or SPARQL

[3] enroute to extract richer

Information Representation of

the city.

MUST US_5

SL_2 Transform (static)

heterogeneous
data sources into

a common format

and logic

It must transform information

coming from different sources
with ETL process in an RDF

representation according to the

ontology selected.

MUST US_5

SL_3 Semantic Search

Implement a semantic search

engine enhanced with semantic

indexing and ranking

techniques, to enable efficient
and context-aware information

retrieval from the knowledge

base. The search engine is not
intended to work for Real Time

interaction.

COULD US_5

SL_4 Querying and

Retrieval

The layer must efficiently
retrieve the status of the city

using SPARQL/SQL anytime each

agent requests it regardless of
how many they are. It is

intended to work on demand and

require high availability, very
low response time (close to real

time).

MUST US_5

SL_5 Supports efficient

ontology

The layer has to support the

implementation of families of
Description Logics (DLs)

specifically designed to

keep all reasoning tasks
polynomially tractable in the size

of the data and is thus suitable

for OBDA.

MUST US_5

SL_6 Semantic

Reasoning

Apply reasoning engines, to
perform inference and logical

deductions based on the axioms

MUST US_5

 13

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

4.3. Cloud/Edge data staging and integration with data
mining frameworks

and rules defined in the
ontology. Reasoning enhances

the semantic capabilities of the

knowledge base, enabling

automated inference and

intelligent querying.

ID Requirement

name

Requirement description Priority User

Story

ID

DS_1 Access to storage

system

(extraction)

The technology used must

provide the necessary directives

to access the data source and be
able to load the corresponding

data into its working memory.

MUST US_6

DS_2 Transformation of

the obtained data

Once the data has been

extracted, a series of
transformations can be applied

to clean, filter, combine, or

aggregate data as needed.

MUST US_6

DS_3 Loading the data

towards data-

mining framework

Once the data is transformed, it

must be able to deliver data

already processed to the

corresponding data mining
methods.

MUST US_6

DS_4 Dynamic scaling

of resources
based on source

size

The technology used should

have the ability to scale the
necessary resources depending

on the size of the data, so that in

an elastic way they choose the

necessary computational
resources to be able to face

these workloads. Also needs to

work across the continuum,
wherever is most efficient.

SHOULD US_6

DS_5 On-the-fly

partitioning

EXTRACT MUST allow data

ingestion to perform on-line

partitioning, avoiding expensive
preprocessing and duplicating

stored data

MUST US_7

DS_6 Data formats
description

EXTRACT will need to offer a way
to specify the structure of the

data, which will allow access to

the data using dynamic

partitioning.

MUST US_7

 14

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

4.4. HPC and Big Data & AI frameworks

4.5. Data security and privacy

ID
Requirement

name
Requirement description Priority

User
Story

ID

Internal requirements

SP_01 Data volume

Provides information about the

data volume to be secured, in

order to choose the most

suitable algorithm.

SHOULD
US_8,

US_9

SP_02 Data velocity

Provides information about the

expected frequency/rate of the

data need to be secured, since
the data rate is crucial for the

security technique to be chosen.

SHOULD
US_8,

US_9

SP_03 Data variety
Provides information about the

expected type of the data to be
processed so as to find the most

SHOULD
US_8,

US_9

ID Requirement

name

Requirement description Priority User

Story

ID

DM_1 Big Data

computation

support

Provides facilities for big data

computation such as Map-

Reduce.

MUST US_1,

US_2

DM_2 Machine Learning

model training

support

Provides support for training ML

models, at least for popular

formats (PyTorch / ONNX / ...).

MUST US_1,

US_2

DM_3 Machine Learning
model serving

support

Provides support for serving ML
models (beyond direct

inference) to allow distributed

deployment and scalability.

MUST US_2

DM_4 Integration with

Data Staging

Allows seamless integration with

data staging, in particular the

catalogue and meta-data

generation for all

created/computed datasets.

MUST US_1,

US_2

DM_5 Workflow and

dataflow

constraints

Allows specification of

constraints over workflow (e.g.,
to allow distribution) and

dataflow (to allow timely

processing of data and data

security/privacy enforcement).

SHOULD US_1,

US_2

 15

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

appropriate way to deal with

them.

SP_04 Model structure

The model structure will

influence the security solution

chosen for instance a machine

learning based solution (e.g.,

Multiparty Computation).

MUST
US_8,

US_10

SP_05

Processing type

The type of processing is key for

identifying the technology to be

used, in particular if data should

be locally o distributed.

MUST US_10

SP_06 Other processing

This requirement will provide

information on other processing

(e.g., Data hashing, cleaning, …)

affecting the data to be secured.

SHOULD
US_8,

US_10

External requirements

SP_07
Data

confidentiality

When treating data, the platform
needs to know which data are

confidential and in which level.
MUST US_8

SP_08 Data sensitivity

When treating data, the platform

needs to know which data are
sensitive so as to effectively deal

with them also in term of data

anonymization.

MUST US_9

SP_09

Model security

When applying the ML model,
the platform needs secure the

model parameters and output.
MUST US_10

SP_10 Performance

EXTRACT should describe the

expected level of performance
time and if it is online or offline

for each data/model

combination.

SHOULD

US_8,
US_9,

US_10

 16

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

5. Technologies proposal

5.1. Data content and metadata layer

5.1.1. Object Storage

Object Storage is the most appropriate solution to the requirements generated in

US_3. Object storage is a form of data storage in which files and associated metadata
are stored as individual objects. Unlike traditional block or file-based storage, where

data is organized in hierarchical folder and file structures, object storage organizes

data into individual objects that are identified by a unique key.

Below we can see how Object Storage meets all the requirements:

Requirement

ID(s)

Justification

CM_1 High availability: Object storage is designed in such a way that it

allows data replication, supports fault tolerance even in case of
hardware or network failures and allows the option to distribute

the data geographically.

CM_2 Scalability: due to its ability to add additional nodes as needed to

increase system capacity and performance.

CM_3 Object Storage offers durability due to its data replication and use

of failover techniques, ensuring data integrity and availability over

time.

CM_4 Object Storage achieves resource utilization efficiency through
intelligent storage, dynamic scalability, fast access, simplified

management, and lower impact of failures.

CM_5 Object Storage typically uses a standard API, such as Amazon S3

or OpenStack Swift, that allows applications to interact with object
storage in a consistent manner. This API is widely supported and

used by a variety of cloud service providers and storage solutions.

CM_6 Object Storage can be deployed on the continuum, as it supports
both edge (MinIO, OpenIO, EdgeFS), cloud (Amazon S3, Google

Cloud Storage, Microsoft Azure Blob Storage) and HPC (Lustre,

Ceph) support. This feature will allow us to store data in the best

place within the entire continuum.

CM_7 Object Storage offers its metadata system that adds knowledge to

the data itself within the platform. Although this is not a MUST

requirement of the storage system, it may be desirable for the

storage system itself to offer these features.

CM_8 Object Storage is regulatory compliant and provides security

through measures such as access control, data encryption,

replication, durability, auditing, and regulatory compliance. These
guarantee the protection of the stored data and comply with

confidentiality, integrity and availability requirements.

 17

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

In summary, Object Storage offers a robust and reliable solution for efficient data
management, which will cover the requirements fitting the EXTRACT use cases.

Besides those benefits, it has limitations that need to be considered for its usage: like

updates replace the objects, cannot seek, cannot append, etc.

5.1.2. Nuvla

For user story “US_4 Metadata management”, Nuvla [4] is an ideal technological

solution for providing a metadata service and fulfilling the requirements of the user

story. Nuvla offers a comprehensive and scalable platform that enables users to

generate, store, query, and share metadata about their datasets effectively.

One of the key advantages of Nuvla is its ability to handle metadata at scale. With

Nuvla, users can manage and organize metadata for a vast number of datasets without

any limitations on the size or complexity of the data. Whether it's a small collection or
a massive dataset, Nuvla's robust architecture (based on horizontally scalable

stateless API services and backed by highly scalable Elasticsearch search engine)

ensures efficient storage and retrieval of metadata records.

Nuvla's metadata catalogue is designed to provide schema-free registration of

metadata records, allowing users to express any required structured information about

their data. This flexibility empowers users to define and adapt metadata schemas

according to their specific needs. By eliminating rigid schema constraints, Nuvla
enables users to capture rich and diverse metadata, facilitating a more comprehensive

understanding of the underlying datasets.

Furthermore, Nuvla offers powerful remote querying capabilities for the metadata
catalogue. Users can perform advanced searches and discover metadata records based

on various criteria, such as keywords, tags, or specific data attributes. The ability to

remotely query the metadata catalogue ensures that users and third-party services
can efficiently explore and identify relevant metadata records, saving time and effort

in data exploration and analysis.

Nuvla also excels in facilitating metadata sharing between users. By leveraging its

collaborative features, Nuvla enables seamless sharing of metadata records with other
users or teams. Users can control the access privileges and define sharing rules,

ensuring secure and controlled sharing of metadata. This collaborative approach

promotes knowledge sharing, enhances collaboration, and fosters a more data-driven

and informed decision-making process.

Requirement

ID(s)
Justification

CM_9 Meta-data catalogue: Nuvla provides meta-data catalogue for

storing information about user’s data: objects, records, sets.

CM_10 Data discovery: Through its query language, Nuvla allows

users to perform advanced searches and discover metadata

records based on various criteria, such as keywords, tags, or

specific data attributes.

CM_11 Meta-data sharing: On Nuvla, users can share meta-data

objects, records and sets among themselves thanks to the

versatile ACLs mechanism.

 18

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

In summary, Nuvla's comprehensive features, scalability, schema-free registration,

remote querying capabilities, and collaborative nature makes it the most appropriate
technological solution for providing metadata services. It empowers users to

effectively generate, store, query, and share metadata about their datasets at scale,

enabling them to harness the full potential of their data resources and accelerate data-

driven insights and innovation.

5.1.3. InfluxDB

InfluxDB [5] is an open-source time series database designed to handle high write and

query loads for time-stamped data. It is built to efficiently store, retrieve, and analyze

time series data, which typically consists of data points associated with timestamps.

Here's a technical description of InfluxDB:

 Data Model: InfluxDB organizes data using a key-value pair approach. It uses

the concept of a "measurement" to represent a set of data points that share the
same measurement name. Each data point is uniquely identified by a timestamp

and associated with a measurement, tags, fields, and optionally, a retention

policy.
 Measurement: A measurement is a logical container for related data

points. For example, you could have a measurement called "temperature"

to store temperature readings.

CM_12 Authn/z access to meta-data: Nuvla provides strong 2FA
authentication and enforcement of ACL to handle the

authorization when accessing data objects/records/sets in the

meta-data catalogue.

CM_13 RESTful API for meta-data access: Nuvla provides RESTful API

for remote access to the meta-data catalogue.

CM_14 Programmatic access to meta-data catalogue: Nuvla provides

well defined API and user level libraries for integration of the

service with third-party services/applications.

CM_15 High availability of meta-data catalogue: The API service

behind the meta-data catalogue is built as the horizontally

scalable layer out of stateless independent services. The load
balancer is placed as the layer in front to balance the incoming

requests.

CM_16 Scalability of meta-data catalogue: Nuvla uses a cluster of

Elasticsearch instances for storage of the data records, objects

and sets that constitute of the metadata catalogue.

CM_17 Durability of meta-data catalogue: Nuvla uses a cluster of

Elasticsearch instances with index replication for storage of the

data records, objects and sets that constitute of the metadata
catalogue. The Elasticsearch is also configured to perform

periodic backups to S3 service.

CM_18 Secure meta-data catalogue: Nuvla provides 2FA with TLS.

 19

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

 Tags: Tags are key-value pairs attached to data points, providing
metadata for efficient filtering and indexing. They are typically used to

identify attributes of the data, such as sensor or location information.

 Fields: Fields contain the actual data values associated with a data point.

They can be numeric, string, or boolean values.
 Timestamp: Each data point has an associated timestamp, indicating

when the measurement was made.

 Time Series Data Storage: InfluxDB stores time series data in a structure

called a "shard." A shard is a self-contained data structure that contains a subset
of the time series data. Shards are created based on configurable time intervals,

enabling efficient data retrieval and retention policies.

 High Write and Query Performance: InfluxDB is optimized for high write and

query loads. It achieves this through various techniques, such as a write-ahead
log, which ensures durability and efficient disk I/O, and a memory-mapped

cache that reduces disk I/O operations.

 Query Language: InfluxDB provides its own query language called InfluxQL

(Influx Query Language) for data retrieval and analysis. InfluxQL supports
various functionalities like aggregation, filtering, downsampling, and joining

data from different measurements. Additionally, InfluxDB also supports Flux, a

more powerful and flexible query language.

 Retention Policies: InfluxDB allows the definition of retention policies to
manage the lifetime of data in the database. Retention policies specify the

duration for which data is stored in a database, as well as the duration of data

replication across InfluxDB nodes.

 Integrations and Ecosystem: InfluxDB integrates with a wide range of tools
and platforms, making it suitable for different use cases. It has libraries and

client APIs available for popular programming languages, and it supports

integrations with data visualization tools like Grafana, as well as alerting and

monitoring systems.

Overall, InfluxDB provides a robust and scalable solution for managing time series

data, with a focus on high performance, efficient storage, and powerful query

capabilities.

The decision to adopt InfluxDB is grounded on the fact that is already adopted by the

Venice Control Room. This would enhance the possibility of a future exploitation of the

project result at the pilot site.

Requirement

ID(s)

Justification

CM_1 High availability: InfluxDB allows for a clustered InfluxDB

installation which consists of two separate software processes:

data nodes and meta nodes.

CM_2 Scalability support

CM_3 Durability: the cloud version of InfluxDB allows replicates of all

data in the storage tier across two availability zones in a cloud

region, automatically creates backups, and verifies that replicated

data is consistent and readable. Moreover The Write Ahead Log

 20

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

5.2. Semantic layer
In order to set up the semantic layer, a mix of technologies has been identified. In
particular according to the literature the hybrid architecture that combines NoSQL Time

Series Database (TSDB) and Graph seems to be recommended for performance

requirements. However, in case the approach results not aligned with the application

requirements (e.g. intensive and timely data extraction), other solutions will be

explored.

There are a variety of approaches to integrating time series data with data stored in a

RDF database, involving query rewriting, property value functions, relying on SQL-
based data integration, SQL based data lakehouses such as Dremio and client-side

integration of data.

In our context we propose a client-side integration approach that uses SPARQL to
query static urban information context, which is used to determine what data to extract

from the time series database InfluxDB.

The decision to adopt InfluxDB is grounded on the fact that is already adopted by the

Venice Control Room. This would enhance the possibility of a future exploitation of the
project result at the pilot site. The Knowledge base will be implemented with Virtuoso,

an open source (GPL v2) multi-model hybrid-DRBMS database engine to manage RDF

triples and support semantic driven heterogeneous data integration. Virtuoso supports
multiple domain ontologies and semantic queries in SPARQL. It includes Fine-grained

Attribute-Based Access Control (ABAC) in addition to typical coarse-grained Role-

Based Access Control (RBAC) according to SQL-standard. Moreover, the possibility to
ingest static heterogeneous data into Virtuoso requires ETL tools. A well-defined

approach adopted by Snap4City developed by University of Florence includes the

combination of Kettle + Karma. Such solution requires the introduction of a MySQL in

the workflow since Karma is able to map a model based on ontology from a MySQL
table to RDF. Another option can be focused on using dedicated tools for different kind

of datasets such as TripleGeo that is able to translate geographic information (SHP

file) into RDF.

(WAL) retains InfluxDB data when the storage engine restarts. The

WAL ensures data is durable in case of an unexpected failure.

CM_4 Storage resource efficiency: InfluxDB allows writing raw data to

one bucket with a small retention policy. Then it is possible to run

a task to determine if values have changed and only write those

changes to a new bucket with a longer retention policy.

CM_5 Integration with applications and services: InfluxDB API provides

a simple way interact with the database. It uses HTTP response

codes, HTTP authentication, JWT Tokens, and basic authentication,
and responses are returned in JSON that allows a standardised

integration with applications and services.

CM_19 Temporal-based information retrieval: InfluxDB is a Time Series
Database, a database optimized for time-stamped or time series

data. InfluxDB is optimized for measuring change over time and

to retrieve information on the base of timestamp efficiently.

 21

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

The related user story US_5 will be addressed with the implementation of the semantic

layer. The requirements with respective explanations appear in the next table:

C

5.3. Cloud/Edge data staging and integration with data
mining frameworks

5.3.1. Lithops
Lithops [6] is a Python framework that covers most of the requirements that are a

result of the US_6 user story.

Lithops is a multi-cloud serverless computing framework. It allows to run unmodified

local Python code at massive scale in the main serverless computing platforms.

Lithops provides great value for data-intensive applications like Big Data analytics and

embarrassingly parallel jobs.

Also, Lithops facilitates consuming data from object storage (like AWS S3, GCP Storage

or IBM Cloud Object Storage) by providing automatic partitioning and data discovery

for common data formats like CSV.

We can see in the next table in what way Lithops covers the requirements associated

with US_6.

Requirement

ID(s)
Justification

SL_1 Integration of Data across Disparate Data Sources. Virtuoso

manages multiple domain ontology thus data coming from
different sources can be accommodated according to the

related ontological concept. Eventually the data generated by

the sensors and EMA can be integrated in VIRTUOSO as

well using dedicated class (e.g. Observation).

SL_2 Transform (static) heterogeneous data sources into a common

format and logic. This procedure can be implemented once and

is used to inset the contextual and state info into Virtuoso.

Solutions like TripeGeo or Kattle+Karma will be considered.

SL_3 Semantic Search. Dedicated API will be implemented

exploiting SPARQL + TSDB query combination mechanism.

SL_4 Querying and Retrieval. The semantic layer will extract the
information implementing a dedicated API that will perform

multiple queries from KB and TSDB and provide the results in

GeoJSON/JSON to the AI module.

SL_5 Supports efficient ontology. Virtuoso is able to support the
implementation of multi-domain ontology to accommodate

different kind of data (e.g. geographic data)

SL_6 Ontology Reasoning Virtuoso implement an efficient semantic
reasoning to enrich the KB with the missing relations according

to the ontology definition

 22

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

5.3.2. Dynamic partitioning tool
We will develop new technologies to aid data partitioning during ingestion and staging

into the EXTRACT platform. We have started devising of a tool that provides dynamic
data partitioning to be ingested from Object Storage. The development of this tool will

suppose one of the research lines contributing to the EXTRACT project.

The related user story US_7 will be covered with the development and integration of
this dynamic partitioning tool. The requirements with respective explanations appear

in the next table:

As dynamic partitioning is a novel technology proposal, our aim in these next
paragraphs is to explain in a understandable way the most relevant issues about the

dynamic partitioning.

The dynamic partitioning tool will provide advantages over the classical approach

(static partitioning).

By means of an example, we can show the essence of the improvements that dynamic

partitioning will bring.

Imagine that we want to count the number of words inside a large text file. Since the

file is very long, doing it in parallel would be infeasible, since the processing time would

be very long.

Requirement

ID(s)

Justification

DS_1 Lithops provides the directives to read/write data in Object
Storage. Since object storage has been proposed as the data

storage technology, Lithops is the perfect tool to be able to

consume this data.

DS_2 Lithops parallel workers support Python, so a lot of popular

libraries can be used to clean, filter, combine, or aggregate

data as needed.

DS_3 Adaptations in Lithops will be performed during the course of
EXTRACT to facilitate the delivery of the processed data to the

pertinent methods.

DS_4 Since dynamic provision of resources is not a mandatory

requirement, Lithops gives facilities to easily change the size

of workers and chunks as necessary.

Requirement

ID(s)

Justification

DS_5 The tool will be especially designed to support on-the-fly

partitioning for extreme data.

DS_6 The tool will enable an extensible model to describe data

formats and their partitioning strategies.

 23

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

As a solution, we propose then to use Lithops to do word counting in full parallel. With
Lithops, we could program N remote functions that would run concurrently, and each

of the remote functions would download the file (stored in Object Storage), count the

words in the region of the text that corresponds to it and return the partial word count

in its text block. Finally, we would do a reduction and, adding up the partial word

counts, we would get the total word count of the huge text file.

However, we can observe that this flow is inefficient. So far, the N remote functions

have to download the whole file from Object Storage, so that once loaded into memory,
the region of interest is selected and the rest of the file is discarded. On the other

hand, creating partitions of the appropriate size requires a costly process to run before

the actual computation that generates new files (duplicating data on storage) only
useful for a particular job. Static partitioning implies a pre-processing step that does

the partitions sequentially and uploads data (in multiple objects, partitions) again to

storage.

The proposal is to allow each of the N remote functions to download from Object
Storage only the region of data it needs (HTTP-range requests). This will benefit in

several ways:

 The download volume will be lower because each worker will download only the

data it needs.
 The Object Storage server will have less workload.
 The memory consumed by each worker will be lower since it will not be

necessary to store the whole file in memory.

To allow the dynamic partitioning of a file, it is necessary to specify the file format in
such a way that the partitioning policy can be defined (known as cloud-native data

formats). The definition of the cloud-native data format will allow to indicate to the

workers which methodology they will have to follow to download the corresponding

data region.

5.4. HPC and Big Data & AI frameworks
The data mining framework is a layer of EXTRACT that provides the building blocks for

coding an application, which is essentially a distributed workflow. As such, it

encompasses workflow orchestration together with several types of analytics
operations that can be performed at varying scale and locations across the compute

continuum. Some of these operations may be isolated functions, and some may be

micro-workflows dedicated to implementing a particular type of analytics. The

operations are using data sets from the catalogue established at the data staging layer

and may generate and register new data sets as results.

5.4.1. Ray
Ray [7] is a Python orchestrator, designed to transparently scale-out Python

applications over multiple cores in the same machine and multiple machines in the
same cluster. It integrates well with other technologies in EXTRACT such as Lithops

and PyTorch. Ray has built-in support for workflows and ML operations of

training/serving and is considered a leader in its field. A more detailed introduction to

Ray is found in D3.1.

 24

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

5.4.2. COMPSs

COMP Superscalar (COMPSs) [8] is a task-based parallel programming model which
aims to ease the development of applications for distributed infrastructures, such as

large HPC, clouds and container managed clusters. COMPSs provides a programming

interface for the development of the applications and a runtime system that exploits

the inherent parallelism of applications at execution time. A more detailed introduction

to COMPSs is found in D3.1.

In the following table, we describe how COMPSs addresses the Data Mining Framework

requirements identified:

Requirement

ID(s)

Justification

DM_1, DM_2 Ray supports integration with almost all 3rd-party big-data
(e.g., Numpy, Pandas, Modin, Lithops, etc) and Machine

Learning (PyTorch, TensorFlow, XGBoost, etc), which enables

EXTRACT support for these computations in the current and
future use-cases, using and managing both CPUs, GPUs, and

any user-defined resources.

DM_4 Ray Data has support for dataset processing that can be

customized, and (of course) we can employ regular Python
code for invoking the catalogue and metadata services as

needed.

DM_5 The existing Ray annotations can be extended, e.g., for
supporting user-defined resources. New annotations for

constraints can be added as needed.

Requirement

ID(s)

Justification

DM_1 COMPSs provides support for big data computation through its

parallelization capabilities. While COMPSs is not specifically

designed for Map-Reduce operations, it offers a programming
model and runtime system that allows for the efficient parallel

execution of data-intensive tasks. By leveraging COMPSs, we

can parallelize tasks’ computations and distribute them across
multiple computing resources, enabling the processing of large

volumes of data.

DM_3 COMPSs, as an application-level orchestrator, excels in

heterogeneous environments, managing execution of complex
distributed applications on a mix of hardware and locations.

Thus, it can be utilized to parallelize and manage the overall

workflows of EXTRACT across the compute continuum, and
specifically those of serving ML models. It can handle the

coordination and scheduling of tasks, ensuring efficient

resource utilization and load balancing. COMPSs can therefore

orchestrate the deployment and execution of the serving

 25

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

5.4.3. ModelMesh
ModelMesh [9] is SoTA for cluster-level model serving in K8s, designed and proven for

large-scale serving. It has also been demonstrated for small deployments, so fitting

edge deployments. As K8s is a key foundation in EXTRACT, this is a good choice for

model serving. It is also highly mature and robust, exceeding the TRL requirements.

ModelMesh implements an intelligent cluster-scale serving of multiple models, based

on a combination of cache LRU (Least-Recently Used) of models combined with load-
balancing of inference work on the cluster nodes and dynamic recovery from failures

such as model loading failures and node failures. Each ModelMesh pod wraps a

concrete model server, such as Nvidia Triton, Seldon MLServer, Intel OpenVino etc.
ModelMesh further adds a “mesh” container in the pod that manages the co-located

server while peering with other ModelMesh pods across the cluster. Last, a “puller”

component in the pod allows retrieving models for serving as data from S3-compliant

object storage. In that aspect, ModelMesh is well-aligned with object storage being the

designated data back-bone of EXTRACT.

5.5. Data security and privacy
The techniques identified for the implementation of this task are based on three main

concepts Differential Privacy, Homomorphic Encryption and Multi-Party Computation.
Although the exact definition of the implementation can be done only when the design

of the whole EXTRACT ecosystem is in a more advanced stage, some techniques have

already been suggested especially for MPC and HE.

5.5.1. Data Privacy

The solutions identified to guarantee the maintenance of privacy of processed data are

mainly based on the application of obfuscation techniques, and in particular the

pipeline, managing the communication and synchronization

between different components involved in the serving process.

DM_4 COMPSs is well-suited for integrating with data staging and

facilitating seamless integration with the catalogue and

metadata generation for the datasets. As the utilization of
COMPSs consists of code annotations like decorators in

common languages such as Python, Java or C/C++, it does

not hinder the management of data movement and staging

within the computational workflow.

DM_5 The existing Ray annotations can be extended, e.g., for

supporting user-defined resources. New annotations for

constraints can be added as needed.

Requirement

ID(s)
Justification

DM_3 ModelMesh allows efficient and scalable serving of multiple
models in almost all available formats over Kubernetes

clusters.

 26

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

application of Differential Privacy (DP). DP is a system provides a rigorous
mathematical definition of privacy. In the simplest setting, consider an algorithm that

analyses a dataset and computes statistics about it (such as the data's mean, variance,

median, mode, etc.). Such an algorithm is said to be differentially private if by looking

at the output, one cannot tell whether any individual's data was included in the original
dataset or not. In other words, the guarantee of a differentially private algorithm is

that its behaviour hardly changes when a single individual joins or leaves the dataset.

This gives a formal guarantee that individual-level information about participants in
the database is not leaked by allowing data to be analysed without revealing sensitive

information about any individual in the dataset.

5.5.2. Data Security

In terms of maintaining data integrity, the selected solutions act by applying

encryption algorithms to the information. In particular, the use of Fully Homomorphic
Encryption (FHE): FHE is a form of encryption that allows computations to be

performed on encrypted data without first having to decrypt it. FHE thus allows

arbitrary computations to be performed on ciphertext, i.e., a text unreadable until it

has been converted into plain text (decrypted) with a key, producing an encrypted
result that can be decrypted to match the result of the same computations performed

on the plaintext. FHE allows for sensitive data to be processed and analysed without

the need to decrypt it first.

Since the en/de-cryption of data could be quite heavy, especially for high quantity of

data, performance tests will be carried out in order to provide indications for the use

of this technique also according to the overall performance required by the system.

Requirement

ID(s)

Justification

SP_08 Differential Privacy will provide protection of data privacy, in

order to prevent the dissemination of sensitive information.

Possible Implementations: PyDP, OpenDP, PySyft.

SP_01, SP_02, SP_03 These requirements are needed to choose the most efficient

implementation of DP

Requirement

ID(s)

Justification

SP_07 Fully Homomorphic Encryption will provide protection of the

data integrity and confidentiality, in order to avoid information

tampering and unauthorized access.

Possible Implementations: HElib, SEAL, PALISADE

SP_01, SP_02, SP_03 These requirements are needed to choose the most efficient

implementation of FHE

SP_05, SP_06, SP_07 These requirements are needed to implement the FHE

 27

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

5.5.3. Process and Model Protection

The proposed security solutions will also deal with the improvement of the security of
the Machine Learning models, and applications, against the adversarial threats. The

main threats to be tackled are:

 Poisoning: Poisoning attacks involve injecting malicious data into the training

dataset in order to cause the ML model to make incorrect predictions. This can
be done by an attacker who has access to the training data or by an attacker

who is able to influence the data that is collected by the ML system.
 Inference: Inference attacks involve inferring sensitive information about an

individual or group based on the predictions made by an ML model. This can be
done by an attacker who has access to the predictions made by the model, or

by an attacker who can observe the behavior of the ML system.
 Adversarial examples: Adversarial examples are inputs that have been

manipulated to cause an ML model to make incorrect predictions. They can be
crafted to mislead the model, by adding small perturbations to the input that

are imperceptible to humans but cause the model to fail.
 Model extraction: Model extraction attacks involve stealing the parameters of

a trained ML model, which can be used to replicate the model or to attack other
systems that use the same model.

 Model inversion: Model inversion attacks involve inferring sensitive

information about the training data based on the predictions made by an ML

model.
 Privacy attacks: Privacy attacks are a type of attack in which an attacker tries

to infer sensitive information about a person by analyzing patterns in the data

used to train an ML model.

Requirement

ID(s)

Justification

SP_09 Multi-Party Computation will provide protection of the model

integrity and confidentiality, in order to avoid the previously

mentioned threads.

Possible Implementations: PySyft, SecureNN, PyMPC, MPyC,

SecureML

SP_05, SP_06, SP_07 These requirements are needed to implement the MPC

SP_10 The performance requirement is needed to implement the MPC

in the most efficient way

 28

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

6. Conclusions
The deliverable provides the result of the requirements elicitation and selection of the

technologies proposed for the EXTRACT project for implementation of the data

infrastructure and data mining framework layer. The deliverable focuses on several
key topics, including data content and metadata layer, semantic layer requirements,

cloud/edge data staging layer and interconnection with data-mining frameworks, HPC

and AI & big-data frameworks, as well as data security and privacy.

In the data content and metadata layer, the requirements focus on high availability,

scalability, durability, efficient resource utilization, integration with applications and

services, interoperability, metadata recording, regulatory compliance and security.
The proposed technology solution is Object Storage, which meets these requirements

effectively.

As the technological solution for the metadata management the Nuvla platform is

proposed. Nuvla offers scalability, schema-free registration, remote querying
capabilities, and collaborative features, enabling efficient metadata generation,

storage, querying, and sharing. The list of the capabilities matches well the

corresponding requirements identified for the metadata management.

The semantic layer requirements emphasize the integration of data across disparate

sources, transforming heterogeneous data into a common format, semantic search,

querying and retrieval, efficient ontology support, and semantic reasoning. A hybrid
architecture combining NoSQL Time Series Database (TSDB) and Graph technologies

is proposed to fulfil these requirements.

In the cloud/edge data staging and integration layer, the requirements include access

to storage systems, data transformation, loading data into data mining frameworks,
dynamic scaling of resources based on source size, on-the-fly partitioning, and

description of data format. The proposed solution focuses on data staging technologies

that allow seamless integration with the catalogue and metadata generation for

ingested and computed datasets.

The HPC and Big Data & AI frameworks layer requirements involve support for big data

computation, machine learning model training and serving, integration with data
staging, and specification of workflow and dataflow constraints. The proposed solution

combines workflow orchestration (COMPSs/Ray) with various analytics operations to

provide a distributed workflow and analytics capabilities.

The data security and privacy layer requirements cover data volume, velocity, variety,
model structure, processing type, data confidentiality, data sensitivity, and model

security. The conclusions highlight the need to consider the specific requirements for

securing data and models in the EXTRACT project.

In conclusion, the proposed technologies and solutions address well the requirements

of the EXTRACT project, providing a solid foundation for the implementation of the

data management, metadata services, semantic layer integration, cloud/edge data

staging, and data security. These technologies pave the way for effective data
processing, analytics, and knowledge extraction. This will enable the project to achieve

its goals of extracting valuable insights from complex and heterogeneous data sources.

 29

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

7. Acronyms and Abbreviations
- EXTRACT - A distributed data-mining software platform for extreme data across

the compute continuum

- HPC - High-Performance Computing

- AI - Artificial Intelligence

- WP2 - Work Package 2

- MoSCoW - Must have, Should have, Could have, and Won't have

- PER - Personalized Evacuation Route

- RL - Reinforcement Learning

- ML - Machine Learning

- TASKA - Transient Astrophysics with a Square Kilometre Array

- UnDysPuted - Unified Dynamic Spectrum Pulsar and Time Domain receiver

- RDF - Resource Description Framework

- PII - Personally Identifiable Information

- API - Application Programming Interface

- RESTful - Representational State Transfer

- SQL - Structured Query Language

- ETL - Extract, Transform, Load

- DL - Deep Learning

- ONNX - Open Neural Network Exchange

- 2FA - Two-Factor Authentication

- ACL - Access Control List

- S3 - Simple Storage Service

- TLS - Transport Layer Security

- TSDB - Time Series Database

- NoSQL - Not Only SQL

- GPL - General Public License

- DRBMS - Distributed Relational Database Management System

- ABAC - Attribute-Based Access Control

- RBAC - Role-Based Access Control

- SHP - Shapefile

- KB - Knowledge Base

- CSV - Comma-Separated Values

- HTTP - Hypertext Transfer Protocol

- CPU - Central Processing Unit

- GPU - Graphics Processing Unit

- COMPSs - COMP Superscalar

- K8s - Kubernetes

- TRL - Technology Readiness level

- LRU - Least Recently Used

- HE - Homomorphic Encryption

- MPC - Multi-Party Computation

- DP - Differential Privacy

- FHE - Fully Homomorphic Encryption

 30

D2.1 Data infrastructure and data mining framework requirements

Version V1.0

8. References
[1] A distributed data-mining software platform for extreme data across the compute

continuum. https://extract-project.eu/

[2] What is MoSCoW Prioritization? | Overview of the MoSCoW Method.
https://www.productplan.com/glossary/moscow-prioritization/

[3] SPARQL Query Language for RDF. https://www.w3.org/TR/rdf-sparql-query/

[4] Nuvla. https://nuvla.io/ui/

[5] InfluxDB Times Series Data Platform | InfluxData. https://www.influxdata.com/

[6] J. Sampe, P. Garcia-Lopez, M. Sanchez-Artigas, G. Vernik, P. Roca-Llaberia and A. Arjona,
"Toward Multicloud Access Transparency in Serverless Computing," in IEEE Software, vol. 38,
no. 1, pp. 68-74, Jan.-Feb. 2021, doi: 10.1109/MS.2020.3029994.

[7] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric
Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, & Ion Stoica. (2018). Ray:

A Distributed Framework for Emerging AI Applications.

[8] Badia, Rosa M. & Conejero, Javier & Diaz, Carlos & Ejarque, Jorge & Lezzi, Daniele & Lordan,
Francesc & Ramon-Cortes Vilarrodona, Cristian & Sirvent, Raul. (2015). COMP Superscalar, an
interoperable programming framework. SoftwareX. 3. 10.1016/j.softx.2015.10.004.

[9] ModelMesh Overview - KServe Documentation Website.
https://kserve.github.io/website/0.8/modelserving/mms/modelmesh/overview/

	1. Executive Summary
	2. Approach to requirements collection
	3. User stories
	3.1. US_1: PER dynamic emergency plans
	3.2. US_2: TASKA ML workflow definition
	3.3. US_3: Data storage
	3.4. US_4: Metadata management
	3.5. US_5: PER semantics approach
	3.6. US_6: Data staging tool
	3.7. US_7: Dynamic partitioning tool
	3.8. US_8: Data Security
	3.9. US_9: Data Privacy
	3.10. US_10: Model and Computation Protection
	4. Requirements
	4.1. Data content and metadata layers
	4.2. Semantic layer
	4.3. Cloud/Edge data staging and integration with data mining frameworks
	4.4. HPC and Big Data & AI frameworks
	4.5. Data security and privacy

	5. Technologies proposal
	5.1. Data content and metadata layer
	5.1.1. Object Storage
	5.1.2. Nuvla
	5.1.3. InfluxDB
	5.2. Semantic layer
	5.3. Cloud/Edge data staging and integration with data mining frameworks
	5.3.1. Lithops
	5.3.2. Dynamic partitioning tool
	5.4. HPC and Big Data & AI frameworks
	5.4.1. Ray
	5.4.2. COMPSs
	5.4.3. ModelMesh
	5.5. Data security and privacy
	5.5.1. Data Privacy
	5.5.2. Data Security
	5.5.3. Process and Model Protection
	6. Conclusions
	7. Acronyms and Abbreviations
	8. References

