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1. Introduction
This deliverable marks the first release of the Data Infrastructure and Data Mining ofEXTRACT, as shown in Figure 1.1 below. Efficient large-scale data storage andprocessing across the compute continuum is a key property of EXTRACT, conformingto the Extreme Data trait of this type of projects.

Figure 1.1 Data Infrastructure and Data Mining Layers in EXTRACT Architecture
The EXTRACT data infrastructure platform revolves around distributed data lake anddata processing. It consists of several key components, identified already in D2.1 asmatching the project’s requirements. Hence, this document will unfold starting withan architectural overview of data infrastructure and then diving into each component’sfunction and value.
A similar focus in this document is provided for the Data Mining layer of EXTRACT(T2.3). This layer deals with the higher, semantic level of data processing workflowsthat EXTRACT applications may require, combining big data elastic ETL, modeltraining/inference and data set generation/ingestion.
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Finally, we discuss the subset of functionality that is selected for a first Minimum ViableProduct (MVP) of EXTRACT. This section further includes technical descriptions of MVPdemonstrators for WP2.
1.1. Purpose and objectives

Key purposes and objectives include:
 Showcasing Progress: Highlight the concrete steps taken from the project'sprevious milestone in M6 to reach the current state of the MVP, detailing thetechnological, architectural, and operational advancements made. Defining Interim Results: Clearly distinguish between the ultimate goals ofthe compute continuum infrastructure and the partial achievements representedby the MVP. This involves outlining the specific functionalities, performancemetrics, and capabilities enabled by the MVP, as well as the gaps or areas forfurther development. Setting the Stage for Future Development: Use the MVP as a benchmarkfor future iterations, identifying both the successes and shortcomings of thecurrent approach. This sets clear expectations for the project's next phases,including enhancements, expansion of capabilities, and integration of additionalcomponents into the continuum. Aligning with Functional and non-Functional Objectives: Ensure that theprogress and lessons learned from the MVP are aligned with the project'soverarching goals. This includes improving efficiency, reducing latency,enhancing data processing capabilities, and fostering a more adaptable andresilient computing infrastructure, while ensuring that we address non-functional requirements such as security matters.

1.2. Relationship with other WPs and PreviousDeliverables
Deliverable Task Relation
D1.2 T1.2 First release of the EXTRACT use-cases
D2.1 T2.1 First release of the EXTRACT data infrastructure and data miningframework
D3.1 T3.1 First release of the data-driven orchestration and monitoring
D4.1 T4.1 Compute Continuum Specification and First Integration Plan

Table 1. Relationship with other WPs

1.3. Document structure
This document is organized in several sections:

 Section 1 is the introduction part of the document. Section 2 reviews the Data Infrastructure Section 3 reviews the Data Mining layer Section 4 discusses aspects of data security, privacy and integrity Section 5 presents the first MVP and a related demonstrator
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 Section 6 details early evaluations of components Section 7 is a short conclusion

The document concludes by listing the acronyms, abbreviations and bibliographyreferences.
2. Data Infrastructure
Presented below is an overview of the entire data management section in the EXTRACTplatform. It includes three main work areas or layers (corresponding to different tasksin WP2, relating to Figure 1.1 above): the data infrastructure (T2.2), the data mininglayer (T2.3), and the data security and privacy module (T2.4).

Figure 2.1 EXTRACT Data Management: Data Infrastructure, Data Mining and Data Security & Privacy

Figure 2.1 shows an overall view of the components within these areas and their maininteractions as presented in D2.1. In what follows, we will present a description of thedifferent software components that constitute the data handling section of EXTRACT.In general, the components are organised into the following, more specific, layers:
 Ingestion: This is a process responsible for inserting the data into the EXTRACTplatform. It includes the transfer of data into the data layer and the associatedpre-processing tasks necessary, which include metadata generation andextraction. Data and metadata layer: This layer includes all software solutions that storedata in the platform. The data layer is essentially a data lake that includes space



7

D2.2 First Release of the EXTRACT Data Infrastructure andData Mining Framework
for bulk data in Object Storage and time-based information in a Time Series DB.The Data Catalog stores all the metadata relative to the data in store andprovides the necessary means for data discovery and searchability. Metadataincludes information of two types: that relevant for data identification (names,origin, history, etc.) and that relevant for the applications that process it(indexes, metrics, methods or procedures, etc.). Semantic layer: Provides a smart way to integrate and retrieve data from thedata layer by creating and maintaining logical relations between different piecesof stored data. It is tightly coupled with the domain of the application using thedata. Data staging layer: This layer manages a scalable solution that provideselastic methods to effectively prepare data stored in the data lake for the datamining frameworks, where it will be mainly processed. This includes tasks suchas data partitioning, filtering, or transformation (such as ETLs). The objectiveof this layer is to provide staging in an elastic, data-driven, and smart fashion,meaning that compute resources destined to staging data dynamically matchthe requirements of mining applications and their input data volume. Data mining layer - framework integration and workflow definition: Thislayer manages the main data processing aspect in the EXTRACT platform. Itdeals with the overall method for workflow definition and the use and interactionof the different tools and frameworks for data mining. Data security, privacy, and integrity: security is transversal to the theEXTRACT platform. This layer includes tools and mechanisms to secure data, itsprivacy, and its integrity across all the different components in the platform.

The data infrastructure components (such as data staging methods and semanticengine) together with the data mining components (analytics and ML frameworks) willbe utilised by EXTRACT workflows through the workflow orchestrator described inD3.2. Additionally, the compute substrate where all these components run will bemanaged seamlessly over the continuum as described in D4.2.

2.1. Data & Metadata Layer
Object Storage
As outlined in D2.1, the adoption of S3-compatible object storage as the central databackbone fulfils the comprehensive data handling requirements in the project. Thatmakes S3-compatible storage the best option for massive data sets. Organising dataas objects in flat rather than traditional file hierarchies, ensures a simplistic andscalable access to data in distributed settings. It fully complies with the explicitrequirements of the project. Object storage provides data integrity, and allows simplegeographical data distribution, meeting key Extract data needs such as highavailability, scalability, and security as identified in D2.1.
Time series DB
Time series databases (TSDBs) are specialized database systems optimized for storingand managing time-stamped data. Such data can represent measurements, events,or observations sequentially ordered by time, making TSDBs particularly suited for awide range of applications, from financial market data analysis to IoT device telemetryand environmental monitoring.Time series databases play a crucial role in handlingdynamic, continuously evolving data that is inherently temporal in nature.
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Key Features of Time Series Databases:

 Efficient Storage: TSDBs are designed to store large volumes of time-stampeddata efficiently, using compression algorithms and data structures optimized fortime-based querying.High Throughput: They can handle high write and readthroughput, accommodating the data velocity typical in real-time monitoringsystems and IoT applications. Time-Based Queries: TSDBs support queries that are time-centric, such asaggregating data over specific time intervals, computing moving averages, orfinding time-based patterns. Data Retention Policies: They often offer automated data retention policies,allowing for the ageing out of old data to manage storage requirements actively.

Data Catalog
A second integral part of the EXTRACT data backbone is the global metadata catalog.This catalog leverages the positive attributes of S3-based services and introduces acomprehensive global management system for metadata. The goal is to enhance theefficiency of search functionalities across different service providers. In terms ofimplementation, the model consists of three core resources (Figure 2.1.1):

1. data-object: This resource acts as a proxy for data stored in an S3 bucket/objectfrom a specific provider. It manages the lifecycle of S3 objects, simplifying dataupload and download processes.2. data-record: This resource allows users to add additional, user-specifiedmetadata for an object. Enabling the attachment of rich, domain-specificmetadata to objects enhances the precision of searching for relevant data.3. data-set: This resource defines dynamic collections of data-object and/or data-record resources through filters. Administrators, managers, or users can definethese collections, providing a flexible and customizable approach to dataorganization.
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Figure 2.1.1: Data Object, Data Record and Data Set layers

Collectively, these resources establish a versatile data management frameworkapplicable to EXTRACT use-cases. The typical workflow involves creating a data-object(implicitly creating the S3 object), optionally adding metadata using a data-recordobject, and finally, finding and using the relevant data-object resources included in adata set. Nuvla facilitates the "using" element by binding data types to userapplications capable of processing the data, offering seamless integration betweendata management and application utilization.

2.2. Semantic Layer
The Semantic Layer, an integral component of the EXTRACT framework, aims to enrichand contextualize the data harvested from diverse sources, thereby facilitating a morenuanced and comprehensive analysis. By leveraging advanced semantic technologiesand ontologies, this layer provides a structured and meaningful representation of data,which is pivotal for achieving nuanced insights and actionable intelligence in real-timescenarios.

2.2.1. Ontology-Driven Data Integration
At the heart of the Semantic Layer is the utilization of ontologies - structured sets ofterms and concepts representing the domain knowledge. These ontologies serve as amodel backbone for integrating heterogeneous data, ensuring that information fromdisparate sources is harmoniously blended and semantically enriched. This integrationnot only encompasses data harmonization but also involves inferring new knowledgeby exploiting the relationships and rules defined within the ontologies.
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2.2.2. Semantic Annotation and Reasoning

To further augment the data with semantic depth, the layer employs semantic annotation
processes. These processes tag data elements with ontology-defined concepts, effectively binding
them with domain-specific meanings. Coupled with semantic reasoning, this enriched data
undergoes a layer of logical inference, uncovering implicit relationships and deducing new facts
that were not directly observable from the raw data. This annotated data is then enriched through
logical inference enabled by reasoning engines like Pellet and HermiT, uncovering hidden
relationships and deducing new facts. The Virtuoso triplestore acts as a robust repository for this
semantically rich data, supporting efficient storage and SPARQL querying capabilities. Standards
such as RDF, RDFS, and OWL provide the foundational framework for data modelling and
representation, ensuring uniformity and comprehensibility across the semantic web. Additionally,
the RDFLib Python library offers versatile tools for transforming and manipulating data into RDF
format, enabling seamless integration and application development within this enriched semantic
ecosystem. Together, these technologies form a powerful infrastructure for enhancing data with
semantic depth, fostering advanced analysis, and facilitating knowledge discovery.

2.2.3. Support for Dynamic and Extreme Data
Given the project's focus on managing extreme data scenarios, such as thosepresented by personalized evacuation routes in crisis situations, the Semantic Layer'sdesign is inherently dynamic. In particular, the ontology implemented is able tomanage dynamic information with their time of arrival (timestamp).
It is also capable of adapting to the rapid influx of high-volume, heterogeneous data,ensuring that the semantic enrichment processes scale efficiently and remainresponsive to the evolving data landscape. This is ensured by the ontology design andthe adoption of scalable triple stores.

2.2.4. Facilitating Advanced Data Analysis
By providing a semantically enriched and unified view of the data, the Semantic Layersignificantly enhances the analytical capabilities of the EXTRACT platform. Analystsand data scientists can leverage this unified view to perform complex queries andanalyses that span across multiple data sources, extracting insights that would bechallenging to obtain from non-semantic, siloed data. Furthermore, this semanticfoundation enables the application of advanced AI and machine learning algorithms,driving innovative solutions tailored to the specific needs of crisis managementscenarios.

2.2.5. Infrastructure Optimization and Performance
The Semantic Layer is optimized for high performance and scalability. It employs state-of-the-art semantic indexing and caching techniques to ensure that the semanticoperations — from data integration to reasoning — are performed with minimallatency, thus supporting the real-time requirements of the EXTRACT platform. Thisemphasis on performance optimization ensures that the system remains robust andeffective, even in the face of data-intensive challenges presented by extreme datascenarios.
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2.3. Data Staging
The data staging layer is the link between the data storage components in EXTRACTand the data mining layer. Its objective is to prepare the data for its easy consumptionby the data processing applications by applying simple data management logic anddata partitioning. It has two key goals: data preparation and automatic data-drivenresource provisioning.
For data preparation, the data staging layer must be able to support different datatransformations required by the mining layer. This includes tasks like filtering, smallaggregations, or combinations, and typical ETL operations. However, the mostimportant task is data partitioning, which will allow the EXTRACT platform to supportbig data sets (Extreme data) by splitting the load into multiple, parallel workers.
On the other hand, to apply these data operations effectively on highly variableExtreme data, it is necessary to rely on a computing substrate that is able to quicklymatch such varying demands. To this end, the EXTRACT data staging layer includesa new tool for the smart data-driven provisioning of resources that is able to scaleresources dynamically to match the needs of the different applications based on thedemands and data volume of each particular execution.
In this document we report our first exploration and implementation of such a smartprovisioning tool, which we evaluated against one of the project’s use cases (Section6.1): the data intensive processing of TASKA use case C.

2.3.1. Lithops data-driven smart provisioning
To find the right number of workers to perform a distributed data processing task ishard. Typically, analytics frameworks split the workload by chunking data in apredefined partition size (a global chunk size) and create as many subtasks as happento be needed. However, this is usually suboptimal for most applications. Optimalproblem partitioning usually depends on the data volume, but also on thecharacteristics of the process at hand and its particular requirements. Importantly,the compute resources underneath, and hence the available workers that run thetasks, may behave differently for each process they run, meaning that the amount ofdata they are capable of processing varies from task to task. This decision increasesin complexity when dealing with extreme data, not only because of the huge volumesof data to manage, but because of the variability of it, which requires a fast and optimalconfiguration of resources.
With the aim of simplifying these decisions, we study and prototype a data-drivensmart provisioning layer on top of the Lithops tool-kit to enable dynamic and intelligentdecision-making in worker provisioning, customised to the demands of extreme-dataapplications. In the world of data-intensive computing, clearly exemplified withinExtract by the TASKA C use-case, the ability to efficiently process vast amounts ofdata is really important. This efficiency is not only about handling the data, but doingit in a manner that is both time and cost-effective.
Taking a step back, to scale a process in a single machine, you would typically scalethe machine vertically. Also known as scaling up, it refers to increasing computingpower by using a bigger machine. Since machines have a limit to how big they can be,you may reach the point where you scale horizontally. Also known as scaling out, thisrefers to increasing computing power by utilising more machines and distributing theworkload along them, each processing a slice of the problem. Each strategy offers
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different advantages and inconveniences, and it is possible to combine them, creatinga complex trade-off. In the case of scaling out, partitioning input data has acomputational overhead and requires specialised tools to read data in diverse formats,on the other hand, scaling up may not be always available, become difficult to manage,and it is also possible that the task does not completely utilise the resources well orthe overhead of managing work within such a big process becomes too big.
The Lithops data-driven smart provisioning layer aims to navigate these trade-offs byleveraging real-time data and application-specific requirements to make informeddecisions about the optimal scaling strategy. Whether it is determining the appropriatesize of workers or the number of workers needed, this intelligent layer addresses theproblem by assessing the current context to optimise resource allocation. This is doneto enhance performance and cost-effectiveness of the data processing tasks.

2.3.2. Smart decisions for compute scaling and provisioning
To find out what is the best approach (in terms of number and size of workers), foreach data-processing task we must take a decision. Lithops will use different sourcesof information to keep these decisions informed and effective.

Figure 2.3.1: Lithops smart-provisioning layer decisions.
Figure 2.3.1 provides an overview of the decisions the Lithops smart data-staginglayer has to make as well as the inputs considered. The Lithops data-staging layershould make a decision, which is the number of workers as well as the runtime memoryto process the data. The objective of the Lithops data-staging layer is to adapt theprovisioning of resources to the specific requirements of the computational process.
The goal of the smart data-staging layer is to enable a pipeline or workflow to makebetter decisions that minimise some objective function based on input variables, muchlike an optimisation problem. The goal is to minimise the objective function (which isexecution time, cost) based on the previously defined inputs.
The smart data-staging component has to make a decision for each process that needsit, and executes before it happens to choose the optimal configuration, this is becausepipelines/workflows have intermediate steps whose requirements are not knownbeforehand, and their data and computational requirements vary from each other.
The inputs to make the decision can be seen in Figure 2.3.1, those are the clusterinformation, which gives information of the current cluster state and availablecomputing, the data properties, which is the data to be processed by the
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pipeline/workflow and the task profiling, which is created by previous executions andgives an idea of the scalability of a given process. A more detailed list of those itemsthat Lithops should consider to make decisions are:

 Data volume and format (input dataset) Cluster capacity / available worker configurations Task worker throughput (MB/s) in a particular configuration (e.g., 1 CPU, 1GBRAM) and other performance metrics (from a history of executions) Cost of workers based on their configuration (either monetary or resourceoccupation) Time and cost of partitioning the data format Ingestion time for a particular worker configuration Deadline / time objectives
The cluster capacity and available worker configurations represent the current stateof the cluster, this will aid the decision making process and limit its search space. Taskworker throughput is a type of dynamic input which depends on previous executions,it changes and converges to a value with more executions. Time and cost ofpartitioning is the time it takes to partition a given dataset in different chunks,ingestion time is the time it takes to process a given chunk/dataset for a particularstep and worker configuration and finally, deadline/time objectives is the deadline fora given step to process the data, all these parameters affect the decision-making ofthe smart data-staging layer.
Some of these inputs are static, meaning that they are not refined and subject tochange, and some are dynamic, which can be updated across multiple executions. Anexample of this is the task profile, where the throughput converges to a value the moredata from different executions we have.
Finally, the decision-making process evolves with each pipeline execution, it relies onthe continuous feedback loop to use the outcomes of past executions to inform futureexecutions and make them cost and execution time effective.

2.3.3. Smart provisioning tool API
The Lithops data-driven smart provisioning layer aims to create a set of functionalitiesthat enable dynamic decision-making for optimal runtime memory and chunk sizebased on the specific requirements of each task. The goal is to make this astransparent as possible for the user, and thus its utilisation will be integrated into theLithops existing API. In particular, smart provisioning will be applied to calls to theLithops “map” primitive, taking the function (task) and input data to make its decisionson the most efficient worker configuration.
Internal to Lithops, the smart provisioning API is designed to integrate into the Lithopsframework as a plug-in, offering a mechanism to analyse, predict and apply the mostsuitable configuration for distributed tasks. This integration is important for enhancingthe efficiency and scalability of data-extreme applications, especially those that aresubject to the complexities of processing extreme data volumes under varyingcomputational demand.
Lithops will only need to feed the data and task properties and the cluster informationto the smart provisioning tool before each execution. By understanding the specificdemands of each task, the API can accurately forecast the resources required toexecute the task efficiently.
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The provisioning tool leverages a database of historical performance metrics andcurrent system state information, including available cluster capacities and workerconfigurations. This data is critical for the decision-making process, allowing it toconsider past performance trends and current resource availability in its calculations.By correlating this information with the task’s requirements, the tool can identify themost cost-effective configuration.
Once the optimal configuration is determined, the tool returns to Lithops the optimalplan of data partitioning or distribution so that Lithops can provide and run the correctworker configuration. This method makes sure that each job is provisioned with theideal worker configuration and parallelism. Since it is automatically applied to Lithopsexecutions, it significantly reduces the operational cost of managing the scale andconfiguration (right-sizing) manually for each application.

2.3.4. Next steps
At this point, we have achieved a new tool for smart resource provisioning for datastaging tasks in data processing workflows. However, its applicability and ease of useis still limited and requires further work to achieve the objectives of EXTRACT. Forinstance, the decision tool requires a manual task profiling run beforehand that feedsthe automatic scaling decisions. Also, the tool only applies a general optimization ofcost and time that tries to minimise both variables, but it does not take into accountother possible restrictions such as execution time objectives that may be crucial fortime-constrained applications. In the remainder of the project, we will keep workingon these lines to explore solutions to these problems by evolving Lithops and the data-driven smart provisioning tool.
In summary, we plan to enhance Lithops with the integration of advanced resourceusage monitoring and automatic task profiling capabilities, as well as introducing theability to specify an execution deadline for task execution, which affects the scalingdecision made by the smart data-staging layer. The objective is to further automatethe optimization of resource allocation. This way, we aim to eliminate the need formanually trying different configurations, and systematically explore configurations fora better, and less involved, exploration that yields better execution efficiency.
In more detail, we will first work towards adding resource usage and monitoring tocapture detailed metrics on CPU, memory, storage and network utilisation for eachtask executed with the Lithops framework. This will work in combination with availablesystem monitoring resources and will provide a standard way to characterise tasks tothen create profiles that the smart provisioning tool can leverage.
Next, we plan to build automatic profiling into Lithops to simplify the task ofrecollecting this information automatically. Further, this automatic process will keepupdating task profiles as tasks are run to further improve their characterisation and,therefore, the accuracy of the smart decisions.
By enabling users to specify task execution deadlines, we can further influence thedecision tool for a more precise provisioning. A time objective means that some of theavailable configurations should be discarded early if they cannot meet it. This clearlychanges the decision behaviour as it restricts the solution space. We believe this willbe an important feature to resolve the time constraints specified for TASKA in D1.1.
Finally, we also found evidence of the importance of partitioning in scaling dataprocessing applications. The worker configuration analysis in Figure 6.1.4 considers
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only a static partitioning technique that requires running beforehand and creates acopy of the whole dataset with the appropriate splits (data duplication). In the future,we will explore the inclusion of dynamic partitioning techniques, which avoidduplicating data in storage and enable faster partitioning times by creating virtualslices of data instead. This is done by generating navigable data indices and calculatingdata pointers. Implementing dynamic partitioning not only will allow faster partitioningtimes but also improve system scalability.

3. Data Mining
3.1. Overview

In this Section we discuss the workflow aspect of data processing in EXTRACT, withspecific facets that pertain to Machine Learning (ML) support. As explained in theprevious Section, datasets are first-class citizens in EXTRACT. An EXTRACT workflowmay begin with some input datasets, and may generate datasets as part of itsoperation, in addition to other types of results (e.g., visualizations, notifications toexternal systems). Figure 3.1.1 below demonstrates the execution of an EXTRACTworkflow as execution of one or more data processing steps. The actual orchestrationof the workflow is discussed in D3.2.

Figure 3.1 Data Mining Workflow Execution
As explained in Section 3 above, each dataset, whether created by a workflow orintroduced from an external source, needs to undergo ingestion, which registers thedataset in the catalog of the data lake, and also builds and registers metadatadescriptors, indices and other relevant details. Thus, ingestion as a workflow step mayoccur in the beginning of the worklow (e.g., for input data) and at every processingstep that generates a new dataset, as explained further below.
Once the dataset is ingested, it becomes part of the EXTRACT data lake. This is truefor any kind of dataset, and in particular, machine learning models. EXTRACT allowsregarding models-as-data, which means encoding the model (inference algorithm) asa set of parameters, depending on the type of model being used. For example, a neuralnetwork can be encoded as a tensor (multi-dimensional array) of numerical weights,each pertaining to an edge between neurons. Models are stored in the model repositorypart of the data lake.
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A workflow step may use one or more datasets from the data lake as input. Some ofthe data may be used as-is, whereas other data may require application-specificsemantic representation, as is demonstrated in D1.2 for the PER use-case. This usesthe semantic layer described in the previous Section about Data Infrastructure
The actual processing of a workflow step in EXTRACT may consist of differentimplementations depending on the specific application. It may involve generic ETL(Extract-Transform-Load) using the data staging facilities (see Section 3.3). This is akind of processing that may consume datasets and creates new datasets. In EXTRACT,we use the same staging component, Lithops, to that end. Another option is to traina model, which is a new dataset and should therefore be ingested after being created.This is accomplished in EXTRACT using PyTorch. Last, it may serve a model, i.e., makeit available for inference. This could be an online model service (as discussed furtherbelow). In EXTRACT, we use serverless Kserve for online serving. Alternatively, offline(batch) inference can also be done using PyTorch or Lithops and an input dataset, withthe result dataset undergoing ingestion. Using this basic components can be later onexpanded to complex workflows for online serving (e.g., combining multiple models).

3.2. Dataset Ingestion
The data ingestion process is essential for data management in a data lake, and assuch, an important part of the EXTRACT architecture. It encompasses the acquisition,registration, and initial processing of data from the sources.
Overall, there are two main objectives in the ingestion process: metadata acquisitionand data preprocessing. The specifics of these processes depend on the particular dataformats being ingested and the procedures, workflows, or applications that typicallyprocess them.
In the case of metadata acquisition, information relative to data is provided along datainsertion to the system, or extracted automatically from each dataset during theingestion process. E.g., these metadata may include simple naming and tagging ofdatasets, location, and other characteristics of the conditions where it was generatedand by who. These and also more complex properties enable the data to be identifiedand retrieved effectively from the data lake, and feed the basic features of the systemto enable data discovery, localisation, and searchability. Further, this information maybe required later by the data mining workflows. Interestingly, the data miningprocesses may require specific information or even the generation of indices thatenable efficient navigation within the data set. These types of complementaryinformation and indices are also generated during the ingestion process.
As for preprocessing procedures, some data formats and/or some data miningworkflows require some data preparation or transformation that must be appliedbefore the dataset is inserted into the data lake. Some examples of thesetransformations could be data filtering or compression that helps optimise storageutilisation and data retrieval. The nature of these preprocessing tasks varies accordingto the needs of the data type and format and aids the subsequent processing steps.
Ingestion may run anywhere in the continuum (edge to cloud) as detailed in D4.2. Theingestion processes are containerised to be deployed on the compute substrate in anycontinuum site and to be scaled dynamically to the income of data into the EXTRACTplatform.
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3.3. Model Repository
EXTRACT employs a model-as-data approach, where machine learning models areencoded as data files. Encoding is one of several options, such as algorithm arguments,e.g., the weights of a neural network, or as serialized code, e.g. pickled Python. Thereare several common formats for storing mode data, such as HDF5, JobLib, etc. InEXTRACT, we chose to start with Open Neural Network eXchange (ONNX - spelled“onyx”), which is one of the most popular formats, supported by many platforms(including PyTorch), and can be converted to and from many other formats.
Having the models encoded as highly-compatible datasets opens up several importantcapabilities: they become portable, can be delivered to different exploiters, e.g., forinference or tuning regardless of the recipient software. They can also be versioned toindicate model evolution, and moved closer to where they are needed.
When models are created in EXTRACT, they are stored in the model repository - asection of the data lake (typically, S3 bucket) that is set by the user’s application tobe used by both training and inference/serving. When a new model is created orupdated (new version), it is stored in the respective model repository and ingested.Then, a recipient may subscribe to notifications on that repository and be notified bythe catalog of the availability of the new model or version, and be able to access it.

3.4. Model Training
For the model development and training, we employ PyTorch, a leading deep learningframework known for its flexibility and efficiency. PyTorch provides us with flexibletools for building and training neural networks, allowing us to experiment with variousarchitectures and optimization techniques.
Our model comprises two neural networks, each consisting of three linear layers.These networks are designed to extract features from the input data and makepredictions based on the learned representations. The detailed explanation of themodel architecture and algorithm can be found in D1.2. The number and type of layers,as well as hyperparameters such as learning rate, batch size, and hidden size, can beeasily modified to fit the required use case.
The trained model is ready to be exported using the ONNX format, facilitatingintegration into various deep learning frameworks such as TensorFlow. Thisexportability allows developers to deploy the model across different environments anduse cases.
Additionally, RAY is used to scale the training process seamlessly across multiplemachines or GPUs. RAY allows to efficiently parallelise computations, significantlyreducing training time while maintaining resource utilization.

3.5. Model Serving
EXTRACT model serving (model inference as a service) is implemented throughKserve, which is an open-source model serving solution. Kserve is in fact a “meta-model server”, in the sense that it wraps concrete model servers in an elasticdeployment that can scale out or in according to inference request demand.
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The architecture of Kserve is shown in Figure 3.5.1 below. A first point to notice is thatKserve can serve models produced by all the major model training platforms in themarkets (e.g., TensorFlow, PyTorch) and all the common formats (incl. ONNX). This isbecause Kserve embeds concrete model servers that are compatible with all theformats, such as Nvidia Triton MLserve, and many others.

Figure 3.5.1 KServe Architecture
Second, note that Kserve typically uses Knative and Istio for a serverless deployment.Kserve predictors (models hosted on model servers) are deployed as Knative services,which allow scaling them dynamically out (increase the set of predictors) or in(decrease). The scaling is governed automatically by responding to changes in requestload, detected by Istio. This allows Kserve to dynamically balance responsiveness andresource consumption / footprint.
Last, note that Kserve is capable of leveraging accelerators such as TPU and GPU forinference. This is important for reducing computation latency for some EXTRACT real-time applications, as described in D2.1.
Note that D2.1 suggested ModelMesh as a solution for efficient elastic large-scalemodel serving, whereas in this document we switch to serverless Kserve. Bothsolutions are large-scale, elastic and performant. However, they operate based ondifferent principles - ModelMesh uses LRU cache for managing model elasticity,whereas Kserve uses serverless principles of response to demand. The switch wastriggered by partner (IBM) interest change and by ModelMesh becoming less popularand attractive to developers compared to Kserve.

3.6. Semantic Logic
This is a logic level that transforms or augments the loaded data in the applicationdomain prior to processing. This maps to the Semantic Layer introduced in the previousSection for Data Infrastructure. It can be an intermediate step in a workflow if requiredby the application.
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4. Data Security, Privacy, and Integrity
4.1. Data Security

The general high-level Cybersecurity Architecture and Requirement of the EXTRACTplatform are detailed in the deliverable D4.2, which encompasses data security aspectsbesides general cybersecurity, system security, software security and pipeline securityconsiderations. However, we outline here certain cybersecurity requirements andarchitectural choices that are relevant specifically to Data Security as such, and theseshould be interpreted from the perspective of data processing along with some dataprivacy considerations. Nevertheless, data privacy deserves a separate considerationand therefore is outlined in a dedicated section focusing on specific data privacy state-of-the-art techniques.
 Data Security (data-at-rest): EXTRACT architecture combines a high numberof varied components (either local or distributed) that have communicationsneeds in terms of data planes, control planes, and orchestration. Therefore, oneof the main security requirements is to ensure that the communications occurin a uniform, interoperable and secure manner, and that the security andintegrity of the data is also ensured. Also, it is important that the security ofthose communications is underpinned by state-of-the-art security parametersand configurations recommended by leading standardization bodies (e.g.,NIST).o Whenever practically possible and applicable, all the data should bestored on encrypted volume files, whether those are native OSfilesystems, ObjectStorage native encryption overlay, or encrypteddocker volumes.o Data security for “RL Agent(s) (inference)” considerations Any “model file” must be accompanied with at least its SHA256 (orSHA512) check value (usually in Linux stored as some-file-name.txt.sha256asc or some-file-name.txt.sha512asc) The type of hash, SHA256 or SHA512, MUST NOT behardcoded and MUST BE a configuration value to alloweasier change, easier testing and security-future-proofupgrades Every time when loading any “model file” According to hash type, check if corresponding sha256asc /sha512asc file exists for the given model If sha256asc / sha512asc does not exist, fails to load (emptyor bad permissions), or the SHA256/SHA512 value of themodel files differs from the value supplied inside itscorresponding sha256asc / sha512asc file → DO NOT LOAD,display error/warning, continue/exit gracefully (dependingon the criticality of failed-to-load file and the design of themodule) NOTE: Because reading/loading large files and computinghash value of large files has performance/time/resourcecost, it is advisable to design “read-and-hash-and-checkhash” routines (should be possible in most modernprogramming languages) that would read the bytestream ofa file and compute hash at the same timeo General Data Integrity considerations
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 Data Integrity is one critical component and requirement for anoverall trustworthy computing environment - in the end, if dataintegrity cannot be guaranteed/verified or at least data tamperingdetected, how can a system be trustworthy? For MVP, the general concept is to use non-weak, state-of-the-art,industry standard hashing algorithms, such as SHA256 withpreference and compatibility towards SHA-3 families such asBlake3. The current industry standard is to use SHA256 and this isa baseline that is also used for the EXTRACT platform cybersecurityarchitecture requirement. Nevertheless, we aim for Phase3 andPhase4 consideration and evaluation (especially performanceimpact) for using Blake3 in certain, or all, parts of the system(depending on their ratio of computational power vs. their dataintegrity realistic risks). For PER use-case, it was concluded that data integrity is importantin all aspects and data flows, but most importantly in the"instructions to users" and "users location and meta-data" set ofdata fields, therefore API-level data exchanges (e.g., JSON) are tobe additionally digitally signed at the "application layer" (in ISOOSI 7 layers terminology) using for example ECDSA. For TASKA use-case, it was concluded so far that data integrity isgenerally important (but not absolutely important as in "life-and-death" scenarios of PER use-case), while data privacy is notconsidered a risk nor a strong requirement. However, given theextreme volumes of data, it is impractical (and most likelyinfeasible) to hash and/or digitally sign ALL the TASKA Raw Data,therefore only certain parts and fields of the post-processed datawill be subject to strong hashing and digital signatures, in additionto TASKA-specific non-corruption checks offilesystems/directories/files using (and improving) TASKA/OBSinternal tools that exist already.

4.2. Data Privacy
Data Privacy ensures the privacy of individuals by protecting their sensitive data.Privacy can be achieved by combining different implementations and avoidingcollecting unnecessary data so it can be divided into privacy by design or by default. Privacy by Design1. Communication only under https protocol2. Anonymization/pseudo-anonymization of data3. State-of-art privacy implementation (GDPR Compliant)

 Privacy by Default1. Minimize the amount of data harvested2. Minimize the Time to live of the personal information
EXTRACT intends to follow best practices to ensure data privacy when arriving intoproduction where real users data shall be used (mainly in the PER use case). However,EXTRACT will also contribute to the research and implementation of state-of-artprivacy preserving techniques before using the real users data. Differential Privacy ishugely used to ensure the privacy of individuals in any datasets. The main idea is to
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give a modified version of the data that can preserve the general information of theoriginal data but with no link to any individual record or user. Which data is consideredsensitive and needs to be protected will be clearer through the life of the project andneed to be discussed with the Ethical Manager of EXTRACT, however, the first scan ofthe existing methods and techniques shows that users location might be sensitiveinformation depending on the use of the location. This need allowed to envision twodifferent scenarios as follows:

 First scenario:

Figure 4.2.1: the first scenario of Differential Privacy

Figure 4.2.1 shows the first scenario where the involved parties in the PER use caseare concerned with privacy preservation, which are the mobile phones of the users,Venice city and BSC as the model provider to be using the users data. The main stepsof the scenario are:1. Grouping of the users geographically2. Differential Privacy by sending the same number of users in each group but withslightly different locations (by adding random noise)3. The mapping between the original locations and the Differential Privacy locationsto send back the reply to the users
 Second scenario:

Figure 4.2.2: the second scenario of Differential Privacy
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Figure 4.2.2 shows the second scenario where the involved parties in the PER use caseare only the mobile phones of the users and BSC. The main steps of the scenario are:1. Anonymization of the user/phone identity2. Differential Privacy by sending the location of the phone with N other locationsgenerated randomly near the original location
Comparing the two scenarios is presented in Table 4.2.1.
Scenario 1 Scenario 2
One request by group N+1 requests by user
A server is needed in (or owned by) Venice No server is needed in Venice
Position info is not necessarily private to Venice Position info is also private to Venice

Table 4.2.1 comparison between the two proposed scenarios

4.3. Model and Computation Protection
The Multiparty Computation (MPC) is used mainly for data/model security, to ensurethe data and the model weights to be secure during computation while protecting themodel against counter examples. This computation is used when more than one partyor entity wants to perform a common task or computation without sharing their assets(data or model), where they all have the final result decrypted. These parties canprovide data, model or function or just computation resources.

Figure 4.3.1: the general view of Multiparty Computation (MPC)
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Figure 4.3.1. Shows the steps of the MPC protocol, assuming that every party involvedin the computation will participate with a machine that they own totally (each machineis owned only by its owner). The main steps of the protocol are as follows:1. Data/Model owner has a dataset or a model to participate in the computation,these datasets will be partitioned randomly into shares2. Each party will send the shares to the other parties, as the shares are random,the other parties can not get any information about the original data just fromthe received share3. Each party has a share from each other party4. Each party locally computes the results of the received shares and model5. Each party broadcasts the result to the other parties6. Each party can reconstruct the whole encrypted result from all received parts7. Each party can decrypt the encrypted result to have the meaningful result

5. First MVP
5.1. Restrictions & Relaxations

The objective of the first MVP is to demonstrate basic capabilities of the EXTRACTplatform. In that sense, we do not expect to see full end-to-end component integrationbut rather provide a sense of what the eventual system would be with independentillustrations of specific components. In coordination with D4.2, the MVP for WP2includes a collection of core components (catalog, Lithops, model serving - Kserve,model training) in accordance with the agreed delivery level for this deliverable (R -report). Beyond the agreed level, we provide demonstrators based on voluntary willof partners.

5.2. Demonstrator – ONNX Model Serving onKubernetes using Serverless KServe
As already mentioned in Section 3.5 we use serverless Kserve for online serving inEXTRACT. We point the reader to Section 3.5 for an overview of Kserve.

5.2.1. Demo Story
The demonstration is about showing how the Kserve stack can be installed and howinferences can be sent for a model in ONNX format. More specifically we willdemonstrate, after setting the InferenceService machinery how inferences can be sentthrough a Jupyter notebook.
In the demo setup, we show in a linux environment (Fedora 39) how to create a singlenode kind cluster and how to install Kserve on this cluster.
We then show how to create the InferenceService that will handle the inferencerequests sent, in our case, through the Jupyter notebook.
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5.2.2. Demo Execution

Environment. Prepare a Linux environment which can be a bare metal machine or aVM. This environment assumes that kubectl has been installed (we used latest versionv1.29.2) and that its current context is a Kubernetes cluster (a single node as can beobtained with kind is possible). The Kubernetes server version that we used was theversion of the kubectl client.
Setup. you need to prepare:

1. kubectl toolWe followed the instructions detailed at Install and Set Up kubectl onLinux | Kubernetes, however kubectl can be installed by using packagemanagement as detailed in Install and Set Up kubectl on Linux |Kubernetes
2. Python tooling with Python virtual environment. We recommendto install pyenv as a way to do this. Then, we create a Python 3.12.2virtual env called onnx_venv using the following commands:

pyenv install 3.12.2
pyenv virtualenv 3.12.2 onnx_venv
pyenv activate skystore-test

Execution:
1. This step may be skipped if you already have access to a Kubernetescluster.Following instructions permit to create a single node cluster with kind:

a. export CLUSTER_NAME="km2"b. Create kind cluster:
cat <<EOF | kind create cluster --name ${CLUSTER_NAME}
--image "kindest/node:v1.29.2" --config -
kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
EOF2. Install the Kserve stack as detailed inhttps://kserve.github.io/website/0.11/get_started/Note that we will use latest version of Kserve : 0.12 (it has nodocumentation for now)

a. curl -s
"https://raw.githubusercontent.com/kserve/kserve/releas
e-0.12/hack/quick_install.sh" >
quick_install_kserve_v0.12.sh

b. chmod 755 quick_install_kserve_v0.12.sh
c. ./ quick_install_kserve_v0.12.sh

In the quite verbose output, you should see the
following lines:
Successfully installed Istio
Successfully installed Knative
Successfully installed Cert Manager
Successfully installed Kserve3. Check that the out-of-the-box inference runtimes are installed:

kubectl get clusterservingruntimes -A

https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/#install-kubectl-binary-with-curl-on-linux
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/#install-kubectl-binary-with-curl-on-linux
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
https://github.com/pyenv/pyenv
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You should have 10 ClusterServingRuntimes where the one which wewill use in this demo is kserve-tritonserver since it the the only onewhich can handle models in ONNX format.

4. Create a namespace (e.g., kserve-test) for our tests:
a. kubectl create namespace kserve-test
b. kubectl config set-context --current --

namespace=kserve-test5. Create the InferenceService
a. Create file onnx-gcloud.yaml which should contain following text(see also the “new schema” athttps://github.com/kserve/website/tree/main/docs/modelserving/v1beta1/onnx)

apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "style-sample"
spec:
predictor:

model:
protocolVersion: v2
modelFormat:
name: onnx

storageUri: "gs://kfserving-examples/models/onnx"

b. ku apply -f ./onnx-gcloud.yaml
c. Check InferenceService status with command

kubectl get InferenceService style-sample -n kserve-
testThe status of the created InferenceService style-sample until itsstatus becomes ready.Note that it may take some time (depending on networkbandwidth it may reach 10 minutes)

d. Move to the onnx_venv virtual environment (see second bullet ofthe setup)
source ~/onnx_venv/bin/activate

e. Install the libraries that will be needed to run the Jupyternotebook:
pip install -r ./requirements.txtWhere cat ./requirements.txt yields:
jupyter
numpy
pillow
protobuf
requests

f. We have to find out the name of the istio ingress gateway:
kubectl get svc --namespace istio-system --
selector="app=istio-ingressgateway"; echo ""which should output something like:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
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istio-ingressgateway LoadBalancer 10.96.164.164
<pending>
15021:31035/TCP,80:30468/TCP,443:31473/TCP 4h21m

g. We detect the Istio ingress gateway:
INGRESS_GATEWAY_SERVICE=$(kubectl get svc --namespace
istio-system --selector="app=istio-ingressgateway" --
output jsonpath='{.items[0].metadata.name}')

h. So that command: echo $INGRESS_GATEWAY_SERVICE yields
istio-ingressgateway

i. We now port-forward local port 8080 to port 80 of the ingressgateway service: kubectl port-forward --namespace istio-
system svc/${INGRESS_GATEWAY_SERVICE} 8080:80 &

j. Before invoking the Jupyter notebook:
i. prepare a few (royalty free) images

ii. download from
https://github.com/kserve/website/blob/main/docs/m
odelserving/v1beta1/onnx/mosaic-onnx.ipynb the
mosaic-onnx notebook

k. We invoke the Jupyter notebook with command:
jupyter notebook

l. Open the mosaic-onnx notebook
m. Within the notebook you should replace the image.jpg by one ofyour images
n. The final cell of the notebook should show a segmented image

5.2.3. Demo Video
The video linked below delivers the demo story as explained in 5.2.1 and 5.2.2. Toavoid a lengthy video, we skip the whole setup part and present just the demo itself,of creating the InferenceService and issuing inferences through the notebook.
https://b2drop.bsc.es/index.php/s/bW34Aqcc97tqT5e

5.2.4. Demo Resources
Kserve deployment repository at GitHub:https://github.com/ymoatti/kserve_deployment

5.2.5. Next Steps
This demo presented a basic capability of serving models. Kserve can practically serveall models in the market, but we focus on ONNX, which is the agreed model format forEXTRACT. There are quite a few improvements that we intend to implement goingforward with the project, including:

 Support for reading models from local S3 - Minio/Ceph Separating the inference from requests - i.e., not invoke inference on everyrequest but return a cached result until a separate trigger re-invokes inference Performance/utilization improvements (still TBD)

https://github.com/kserve/website/blob/main/docs/modelserving/v1beta1/onnx/mosaic-onnx.ipynb
https://github.com/kserve/website/blob/main/docs/modelserving/v1beta1/onnx/mosaic-onnx.ipynb
https://b2drop.bsc.es/index.php/s/bW34Aqcc97tqT5e
https://github.com/ymoatti/kserve_deployment
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6. Evaluation
6.1. TASKA-C scalable computation using Lithops

To present and evaluate the need for a smart-provisioning layer in Lithops and showits potential, this section explores the idea in the context of TASKA C (described inD1.2). We will show the problems that arise in the execution of this extreme dataworkflow and the benefits of adding the ability of automatically choosing the right scaleto perform its different tasks in each execution.

Roadmap
We start by evaluating the different tasks that are part of TASKA C. As described inD1.2, TASKA C workflows are compositions of several data processing, each presentingan opportunity for optimising its scale. We will see that the Rebinning task is speciallydemanding due to being the most data-intensive one. Therefore, the next parts of thisexploration put special focus on it.
Then we continue by comparing different scale-out strategies, employing cost andexecution time minimization as our objective function. We employ a pareto frontieranalysis to identify optimal configurations by balancing the trade-offs betweenexecution speed and cost.
Finally, we refine our analysis by incorporating the partitioning time in the scale outapproach and comparing it against a scale up strategy, this offers a more nuancedunderstanding of the scalability challenges and solutions in distributed computingenvironments. This analysis ends in a set of conclusions that validate the benefits ofa smart-provisioning layer in Lithops.
Use Case Overview
Computational Requirements and Throughput Analysis

Figure 6.1.1: Throughput per step with different VCPU configurations.
We start with the analysis of how the throughput of the current implementations ofeach computational step (rebinning, calibration, and imaging) answers to varyingnumbers of CPU cores (vCPUs in the cloud). The results are presented in Figure 6.1.1.
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The Rebinning step exhibits an increase of throughput with additional vCPUs, whichindicates a benefit from scaling up resources. However this trend does not hold for theCalibration step. We observe that increasing the vCPU count does not yield higherthroughput, suggesting that the calibration step does not scale with additionalcomputational resources, highlighting a limit on scalability. We also observe that thecalibration step throughput decreases with more vCPUs provided. This is due to theapply calibration substep within and we will explore this issue further in the future.Finally, Imaging does scale up, although very slightly. This suggests that the Imagingprocess, although using parallelism, requires significant synchronisation that hindersits scalability.
Given these findings, we conclude that Rebinning and Imaging benefit from a scale upapproach, while Calibration does not.
We see that each process (step) has its own particularities and their computationalrequirements vary. For instance, we can observe that by providing more vCPUs to theRebinning step as well as the Imaging step it is possible to improve the throughput,but at very different rates. Further, in the Calibration step, a scaling up approach doesnot yield performance improvements, and thus a different strategy must be used tocorrectly scale its computation. This clearly shows that provisioning the right amountof resources for each of these steps is not general and requires a smart decision thattakes into account the particular characteristics of each task.
Data Volume Analysis
Once we understand the performance of the different steps, we also want tounderstand how they interact with data. For that, we next study the pattern on datausage as well as ratios in input and output data for each step to identify what processesare the most computational/data expensive and ultimately identify how data volumeaffects their execution. To this end, Figure 6.1.2 plots the input and output volume ofeach step for processing an input dataset of close to 8 GB in a simple sequence ofrebinning, calibration, and imaging.

Figure 6.1.2: Data volumes per step (input-output).
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First, rebinning is the step that ingests most data at 7960 MB (the full dataset). Thisis a lossy process that compresses the data, which in this case reduces the output ofthe process to 420 MB.
The calibration step takes a measurement set (usually after rebinning) and adds a newcolumn to it. Consequently, the calibrated measurement set has a higher sizecompared to the original measurement set.
The imaging process takes the calibrated data generated in a calibration step andcreates an image cube with a human-readable representation of the instrumentobservation. In this case, the resulting image is 4MB in size.
We see that the steps have clearly diverse data requirements, with some of themprocessing large data with lightweight computation, while others do not process muchdata and are heavier on the logic. Again, this requires an informed solution that cannotbe general and strengthens the idea of a staging layer that smartly chooses the rightstrategy for us not only depending on the computational needs but also on the dataprocessed of that step; i.e., a data-driven decision.
Finding the right size and number of workers
The Scale-Out vs. Scale-Up tradeoff
After the analysis of the different steps in TASKA C, we focus on the question of findingthe appropriate worker configuration for them. To wit, we want to know what is thebest combination of scale-up (growing the workers with more resources) and scale-out (adding more workers). For this, we analyse the rebinning step in more detail.First, we explore data and problem partitioning for the rebinning step to understandhow it behaves when scaling out. Then we compare it against a full scale up approach,where the data is ingested whole on a single machine with multiple vCPUs. Theobjective of these experiments is to give an empirical overview of the different optionsavailable to the smart data-staging layer, what it will need to take decisions on, andwhy it is needed in the case of workflows that deal with extreme data.
To find the best configuration of workers, we consider two variables that represent ourobjective: execution time and cost. Time is a direct representation of applicationperformance, while cost is also important if we want to ensure efficient executionwithout overwhelming our resources or wasting unnecessary energy. We want tooptimise both cost and time since the objective is to have executions that take theleast time possible at the lowest cost possible.
Cost can be calculated simply as resource occupancy for a period of time, but to beprecise, here we calculate it as the product of execution time (in ms) and the amountof resources utilised (in MB). To simplify, we use a system akin to resource billing inAWS Lambda, where the price is established for an amount of memory but representsa slice of a machine including proportional memory, CPU, and network.
In this experiment, we use several worker configurations (with different memory andproportional CPU) and plot them on the axis of execution time and cost. The first resultis shown in Figure 6.1.3, where we explore how much it takes to process a total of1091 MB of data with configurations ranging from 1 to 9 workers. For that, a 1090 MBsingle MS dataset is taken and partitioned into different chunk sizes. Then therebinning step is executed for the various configurations. Each configuration has been
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run for 5 to 10 repetitions and the point represents the mean of the execution timeand cost, with bars showing the error in execution time (horizontal) and cost (vertical).
To find the best configurations, we may first obtain the Pareto frontier. It will tell usthe Pareto-optimal configurations for both variables. An optimal configuration isachieved when it is impossible to improve the performance or cost-effectiveness forone aspect (cost or execution time) without negatively impacting the other. In otherwords, a configuration is considered optimal if any attempt to reduce costs or decreaseexecution time leads to a detriment in the other area.

Figure 6.1.3: Pareto frontier for averaged executions of rebinning step with 1090MB.
The Pareto frontier shows that the most optimal configurations are those that split theinput data in small chunks (125 MB or 277 MB) and use multiple (small) workers torun the process.
This would allow the data-staging Lithops component to make decisions at runtimebased on previous executions, if the scientist needed a fast execution, the Lithopsdata-staging component would make the workers as big as possible and have as manyas possible (10240 MB of runtime memory, 125 MB of chunk size and 9 workers). Onthe other hand, if there is no execution deadline, the data-staging component wouldchoose an equilibrated configuration with lower cost (a potential heuristic could be thepoint that minimises the distance to the origin, for example, and we would beconsidering using partitions of around 277 MB and workers of 3 GB of memory).
Incorporating Data Partitioning Time
The previous experiments do not reflect the time it takes to partition the measurementset of 1090 MB into smaller chunks. Data partitioning is an expensive process,especially for extreme data, required to enable problem distribution onto multipleworkers. This process must run before the actual task (e.g. rebinning) to generate
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data slices from an original file that each worker will take individually. To build a faircomparison, we must add the partitioning time to each configuration that requires it.
For that, we have taken the casacore library and partitioned the measurement set of1090 MB into a different number of partitions, trying also to scale the resources wherepartitioning takes place (bigger VMs with higher core count). With this evaluation, wefind that creating these slices is a sequential process that does not scale with multipleCPU cores (i.e., the process takes a similar time with 2, 4, or 8 cores). Also, the processis mostly independent from the number of slices created, with partitioning time varyingonly up to 11% from creating 2 to 10 partitions. As a context from our runningevaluation, partitioning time for an input file of around 1 GB takes between 46 to 52seconds to complete. Of course, this process has its associated cost, which we mustconsider for configurations that require it (those with multiple workers).

Figure 6.1.4: Scale up vs scale out for 1090 MB rebinning.
Figure 6.1.4 adds the time and cost of partitioning to the executions of Figure 4. Thisclearly creates a contrast between the configurations that use an exclusively scale-upapproach (1 worker) against those that combine both scale-up and out (requiringmultiple workers and, thus, partitioning).
When accounting the partitioning time for scaling out, we can observe that the cost ofpartitioning clearly exceeds the performance benefits of using multiple workers.Hence, using a single worker is much more efficient in both execution time and cost,unless the data does not fit into any available worker, where we would be forced topartition it.
We draw the following conclusion for the rebinning process of TASKA C: given ameasurement set, it will be always better to ingest it as a whole instead of partitioningit. Therefore, this is the decision to be expected from a smart data-driven provisioningin Lithops. This is because rebinning scales vertically effectively, and utilises the all
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cores available in the worker. However, we still must consider a limitation: if themeasurement set were big enough that it does not fit into a single worker, then wewould still need to do partitioning. This fact also gives more strength to the Lithopsdata-driven smart provisioning layer, as it dynamically adjusts resources based on theworkload and computational requirements. By intelligently managing the computeresources, it ensures that the data processing is both efficient and cost effective.
Conclusions
The experiments illustrate that there is no silver-bullet when scaling to face the diversecomputational demands presented by the different workflow tasks. This variabilitydemonstrates a critical need for a provisioning layer capable of dynamically selectingthe most appropriate strategy in real-time, customised to the computational as wellas data demands of each task. On one hand, some tasks may require more or fewercomputational resources for the same volume of data based on the characteristics ofits logic (compute or data-intensive). On the other hand, there is data variability,where each task execution may have huge variances in its data demands and requireadaptive algorithms that efficiently manage the vast ranges of data sizes. This showsthe need of an orchestration layer that can intelligently adjust to both computationaldemands and extreme data.
In our exploration, we have also seen that manual configuration and decision-makingare time-consuming and also prone to inefficiencies. The smart provisioning layerenvisioned in the Extract project will eliminate these challenges by automating thedecision-making process, leveraging data properties, historical execution information,and the current resource availability to make informed provisioning choices thatenhance both performance and cost-effectiveness of applications.

6.2. Model Protection Using MPC
The MPC, as a model security solution, provides the security of the Machine Learningmodels, and applications, against the adversarial threats when applied on the dataeither in training or inference phases. However, implementing MPC is not cheapregarding performance and accuracy requirement, in this section we present andevaluate the MPC in a multi machine scenario. The scenario was implemented includingthree parties to simulate the future potential collaboration in the PER use case betweenthe parties VEN (data provider), BSC (model provider) and Cloud Provider forcomputation of the inference of a machine learning model on a validation dataset ina secure way that guarantee the security of the model and the data. As shown in Figure6.2.1, the parties are renamed as Alice, Bob and Claude respectively. The assumptionsof this scenario are: The scenario have three different parties involved in the inference computation Each partner participates with a machine/cluster in the MPC protocol separatedfrom the others Alice has sensitive data and it is necessary to protect it Bob’s model needs protectionThree docker containers were used to simulate 3 parties’ machines, and this proof ofconcept used the MNIST dataset with a 2-convolutional layered model.MNIST dataset. The MNIST database (Modified National Institute of Standards andTechnology database) is a large database of handwritten digits that is publicly availableand commonly used for training various machine learning models. The dataset size is
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21.00 MiB, The number of samples (28×28 pixels images) divided into a trainingdataset of 60,000 images and testing dataset of 10,000 images.Used hardware and software. The scenario was conducted using virtual machinerunning Ubuntu 20.04.6 LTS (GNU/Linux 5.4.0-164-generic x86_64) with 4 coreIntel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz and 12 GB RAM

Figure 6.2.1: the simulation scenario and the mapping with the PER use case

The MPC library (CrypTen):To implement the MPC protocol we used CrypTen, an open source library (GitHub link)for Privacy Preserving Machine Learning built on PyTorch. Its goal is to make securecomputing techniques accessible to Machine Learning practitioners. It currentlyimplements Secure Multiparty Computation as its secure computing backend.
MVP overview:The scenario overview as shown in Figure6.2.2 involves three separated machines(Alice, Bob and Claude), Alice has the MNIST validation dataset with the correct labelswhile Bob has the trained model on the MNIST training dataset. The scenario steps areas follows:1. All the three machines initialize the protocol and exchange the setup information2. Alice encrypt the validation dataset and broadcast it to the others (send thesecret shares)3. Alice encrypt the trained model and broadcast it to the others (send the secretshares)4. Every party calculates the inference of their model and data shares locally5. Every party broadcast their result to the others and now everyone canreassemble the encrypted result6. Every party can decrypt the result to have the predicted labels7. Alice benchmark with the real label as the owner of the true labels
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Figure 6.2.2: the MVP overview

Version 0:The first benchmark to test the library on one machine with different models’structures and two multiprocess (Alice and Bob) on one machine, the goal was to testthe functionality of the library and to benchmark the time and accuracy of using it.

Figure 6.2.3: the MVP version 0

Alice has the MNIST validation dataset with the correct labels while Bob has the trainedmodel on the MNIST training dataset. The scenario steps are as follows:1. Alice encrypt the validation dataset and broadcast it to Bob (send the secretshares)
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2. Alice encrypt the trained model and broadcast it to Alice (send the secret shares)3. Every party calculates the inference of their model and data shares locally4. Alice benchmark with the real label as the owner of the true labelsBob has three model structures models A,B and C shown in Figure 6.2.4, where modelA is a Multilayer Perceptron (MLP) structure with 3 linear layers, while models B andC are 2-convolutional layered models with different settings.

Figure 6.2.4: the different model structures A,B and C

The benchmark of this version is shown in Table 6.2.1, which shows the average time(in seconds) of the three models inference on 40 of validation batches
Model A Model B Model C

Pytorch With
Crypten

Pytorch With
Crypten

Pytorch With
Crypten

Time 0.055 1.854
(33.7
times)

0.159 17.465
(110
times)

0.129 22.891
(177
times)

Table 6.2.1: the time benchmark of the model structures A,B and C compared with and without
using Crypten

Table 6.2.1 shows the computation/performance of using the MPC (implemented byCrypten) meanwhile the accuracy was intact by using Crypten and for the next step,Model B was selected only.
MPC full MVP on three different machines:To simulate three separated machines, docker was used to build a container and thecompose file to set up the three different machines and the network that theycommunicate through. Figure 6.2.5 shows the three logical layers, 1) the file system
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with the validation dataset and labels, the trained model file and the script that thethree containers will run. 2) the building of the docker python container with all thedependencies and the inference script file to be run. 3) run three different instancesAlice (with access to the validation dataset and labels files), Bob (with access to thetrained model file) and Claude. Also the compose file is configured to set up a localnetwork to allow the three machines to communicate.

Figure 6.2.5: Docker setup

The benchmark of this version is shown in Table 6.2.2, which shows the average time(in seconds) of the models inference on 40 batch of 256 photo each (with averageaccuracy 0.9872)
Time Alice Bob Claude

25% CPU 330.19 330.16 330.18

100% CPU 45.73 45.72 45.72

Table 6.2.2: the time benchmark of the model B using 3 separated machines using a quarter of a
CPU core or a whole CPU core



37

D2.2 First Release of the EXTRACT Data Infrastructure andData Mining Framework

7. Conclusion
This deliverable is part of EXTRACT project’s WP2. As shown, it embodies the result ofsignificant work done for defining data infrastructure and data mining layers that meetthe ambitious requirements of EXTRACT, and further includes initial evaluations anda demonstrator. Having said that, significant work is still ahead for completing theimplementation according to the laid-out design, and evaluating full end-to-endscenarios to prove the goal KPIs.
8. Acronyms and Abbreviations
- AI – Artificial Intelligence
- API – Application Programming Interface
- AWS – Amazon Web Services
- CA – Consortium Agreement
- CD – Continuous Development
- CI – Continuous Integration
- COE – Container Orchestration Engine
- CPU – Central Processing Unit
- D – Deliverable
- DevOps – Development and Operations
- DevSecOps – Development, Security and Operations
- DoA – Description of Action (Annex 1 of the Grant Agreement)
- GA – General Assembly / Grant Agreement
- GPU – Graphics Processing Unit
- HPC – High Performance Computing
- IDE – Integrated Development Environment
- IPR – Intellectual Property Right
- ISO – International Organization for Standardization
- KPI – Key Performance Indicator
- K3s – Lightweight Kubernetes
- K8s - Kubernetes
- LAN - Local Area Network
- M – Month
- MS – Milestones
- NAT – Network Address Translation
- OS – Operation System
- PaaS – Platform as a Service
- PM – Person month / Project manager
- QUIC – Quick UDP Internet Connections
- SaaS – Software as a Service
- SHA – Secure Hash Algorithm
- T – Task
- TLS – Transport Layer Security
- UDP – User Datagram Protocol
- VCS – Version Control System
- VM – Virtual Machine
- VPN – Virtual Private Network
- WP – Work Package
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