EXTRACT

A distributed data-mining software platform for
extreme data across the compute continuum

D2.2 First Release of the EXTRACT Data
Infrastructure and Data Mining

Framework

Version 1.0

Documentation Information

Contract Number

101093110

Project Website

www.extract-project.eu

Contractual M15, 31st March 2024
Deadline

Dissemination PU

Level

Nature R

Author IBM

Contributors BIN, BSC, MATH, SIX, URV, LRI
Reviewer URV

Keywords Data, Mining, Infrastructure

http://www.extract-project.eu

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR{gg\CT

A distributed data-mining software platform for
extreme data across the compute continuum

Change Log

Description Change

IBM: Initial Draft and structure
URYV, IBM, SIX , LRI content
IBM - model serving demonstrator

Review Acceptance from URV

Final review IBM. Ready for submission

- The EXTRACT Project has received funding from the European Union’s
Horizon Europe programme under grant agreement number 101093110.

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
eeeeeee data across the compute continuum

Table of Contents

3 I 0 o Yo [T uf o o P 4
1.1. Purpose and ObJeCliVeSciiiiiii i 5
1.2. Relationship with other WPs and Previous Deliverables.............c.cooviivviinnnnne. 5
G TR D To To{ B [g g 1= o L A1 f B [o 5 1 < 5

R D 1 = I K g i = 1) o 8 o o = P 6
2.1. Data & Metadata Layer ..ooviiiiii i e 7
B S =T = o Tl = 1Y 7T o 9

2.2.1. Ontology-Driven Data Integrationccoooiiiiiiii i 9
2.2.2. Semantic Annotation and ReasoNiNg.......cccvviiiiiiiiiiiiiii i i e 9
2.2.3. Support for Dynamic and Extreme Data........coooviiiiiiiiiiiiiee e 10
2.2.4. Facilitating Advanced Data AnalySiS......ccviiiiiiiiiiiiii i 10
2.2.5. Infrastructure Optimization and Performance..........cccviiviiiiiiiiiiiininnnns 10
2.3. Data Staging .ooieiiiiiiiiii i 10
2.3.1. Lithops data-driven smart provisSioniNg.......ccoeeiiiiiiiiiiii i i i eaans 11
2.3.2. Smart decisions for compute scaling and provisioning..........cc.ccevveevenne. 12
2.3.3. Smart provisioning toOl APL.......coeiiii i 13
2.3.4. NeXE SEOP S i e 14

3. Data MINING oo e 15
R B O 1 7T YT 15
3.2. Dataset INgeStiON ...ciiiiiiiii e 16
G T\ o Yo 1= I RU=T oo 1] | e YA PP 17
G 2 S o Yo [=1 I I = o Yo T PP 17
3.5, MOl SIVING 1ottt e 17
G I SRS =T 0 1 =) o Tl o o | o 18

4. Data Security, Privacy, and Integrityccoiiiiiiiiiii e 18
O I B T | = T =T ol U] | Y P 18
4.2, Data PriVaCy .uviiiiiiiiiiii i s 20
4.3. Model and Computation Protection........cooeeiiiiiiiii e 22

S 1= o 1 Y PP 23
5.1. Restrictions & Relaxationsccciiiiiiiiiiiii i s e 23
5.2. Demonstrator — ONNX Model Serving on Kubernetes using Serverless KServe
.. 23

ST T B 1< o o Vo TS o Y P 23
V2270 B 1= o o Lo T =T o{ U | [0 1S 23

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining

Framework EXTR[!I\CT

A distributed data-mining software platform for
exireme data across the compute continuum

VNG T B 1< o o Lo BV A T [=To T PP 26
5.2.4. DEIMO RESOUICES ..ttt iitesssntessanesssasessasessaanssssasesssanssssanssssannnsssnns 26
IV T 1) =T o 1 PP 26

B. EValUatiON i e 26
6.1. TASKA-C scalable computation using Lithopscccoviiiiiiiiiiii i 26
8T 0= [y I @ A= V= 27
Computational Requirements and Throughput Analysis...........ccovivvvinnns 27

Data Volume ANalysSis ... e e 28

Finding the right size and number of workers...........ccooiiiiiiiiii s 29

The Scale-Out vs. Scale-Up tradeoff......ccoviiiiiiiiiiiiii e 29
Incorporating Data Partitioning Time......coooiiiiiiiiii s 30

6.2. Model Protection UsSing MPCottt e e e 32
/2 e Tl 11 1= Lo ISP 37
8. Acronyms and AbbDreViationsS ... e 37
1 T 2= £=T =] [0l PP 38

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR[!I\CT

A distributed data-mining software platform for
exireme data across the compute continuum

1. Introduction

This deliverable marks the first release of the Data Infrastructure and Data Mining of
EXTRACT, as shown in Figure 1.1 below. Efficient large-scale data storage and
processing across the compute continuum is a key property of EXTRACT, conforming
to the Extreme Data trait of this type of projects.

©r - —
:: e = Bl
- = 1) Data Staging Data E—
E | saCurily g
3 E
E_E L.-—'.EI i‘l
'E Machine Learning Big Data E
HEl IC08 B G
E 5 [Warkflow Description L' """': |
v made
: ! e sacurity
E E r[Scheduling]——l \ ;
g 1 Deployment [Monitoring e
& 5
1 Cyber
- E . Interoperability Abstraction Layer SBCUrity
=
E‘ E [I I 2
o - Edge Cloud HPC
- Frameworks Framewoarks Frameworks L .
a|

Figure 1.1 Data Infrastructure and Data Mining Layers in EXTRACT Architecture

The EXTRACT data infrastructure platform revolves around distributed data lake and
data processing. It consists of several key components, identified already in D2.1 as
matching the project’s requirements. Hence, this document will unfold starting with
an architectural overview of data infrastructure and then diving into each component’s
function and value.

A similar focus in this document is provided for the Data Mining layer of EXTRACT
(T2.3). This layer deals with the higher, semantic level of data processing workflows
that EXTRACT applications may require, combining big data elastic ETL, model
training/inference and data set generation/ingestion.

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
exireme data across the compute continuum

Finally, we discuss the subset of functionality that is selected for a first Minimum Viable
Product (MVP) of EXTRACT. This section further includes technical descriptions of MVP
demonstrators for WP2.

1.1. Purpose and objectives

Key purposes and objectives include:

Showcasing Progress: Highlight the concrete steps taken from the project's
previous milestone in M6 to reach the current state of the MVP, detailing the
technological, architectural, and operational advancements made.

Defining Interim Results: Clearly distinguish between the ultimate goals of
the compute continuum infrastructure and the partial achievements represented
by the MVP. This involves outlining the specific functionalities, performance
metrics, and capabilities enabled by the MVP, as well as the gaps or areas for
further development.

Setting the Stage for Future Development: Use the MVP as a benchmark
for future iterations, identifying both the successes and shortcomings of the
current approach. This sets clear expectations for the project's next phases,
including enhancements, expansion of capabilities, and integration of additional
components into the continuum.

Aligning with Functional and non-Functional Objectives: Ensure that the
progress and lessons learned from the MVP are aligned with the project's
overarching goals. This includes improving efficiency, reducing latency,
enhancing data processing capabilities, and fostering a more adaptable and
resilient computing infrastructure, while ensuring that we address non-
functional requirements such as security matters.

1.2. Relationship with other WPs and Previous

Deliverables

D1.2
D2.1

D3.1
D4.1

T1.2 First release of the EXTRACT use-cases

T2.1 First release of the EXTRACT data infrastructure and data mining
framework

T3.1 First release of the data-driven orchestration and monitoring

T4.1 Compute Continuum Specification and First Integration Plan

Table 1. Relationship with other WPs

1.3. Document structure

This document is organized in several sections:

Section 1 is the introduction part of the document.

Section 2 reviews the Data Infrastructure

Section 3 reviews the Data Mining layer

Section 4 discusses aspects of data security, privacy and integrity
Section 5 presents the first MVP and a related demonstrator

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
exireme data across the compute continuum

* Section 6 details early evaluations of components
e Section 7 is a short conclusion

The document concludes by listing the acronyms, abbreviations and bibliography
references.

2. Data Infrastructure

Presented below is an overview of the entire data management section in the EXTRACT
platform. It includes three main work areas or layers (corresponding to different tasks
in WP2, relating to Figure 1.1 above): the data infrastructure (T2.2), the data mining
layer (T2.3), and the data security and privacy module (T2.4).

Data analytics Ingestion
workflow description

————

— - — - o o -

] \ ! 5
! ' g 3
1 1 £ ==
e 1 : . 1 © 8
Application i Data Time Series | B &
Marketplace 1 Catalog DB 1 S E
1 1 Q
T [} E >
-------------------- =
v i O e = =
c S5 8
Y ! I o 3 2
! 'E " a
1 I o o ® T
Analytics Scheduler 1 i > . 1 € 0 ==
—» |Data Staging methods Semantic Engine c > ©
and Orchestrator 1 S g 1 o ® Q
1 L 1 2
Q
1 1 -

@ & o

N Ot

Big Data Mining/Analytics layer

- e mm mm omm omm Em Em s Em Em Em Em Em mm mm S Sm Sm S Em Em s Em Em mm o Em o mm mm s omm Em
o Em o E E EE O EE EE BN W BN W N W BN BN N NN W W W BN EE N W SN EE e W W

-

Figure 2.1 EXTRACT Data Management: Data Infrastructure, Data Mining and Data Security & Privacy

Figure 2.1 shows an overall view of the components within these areas and their main
interactions as presented in D2.1. In what follows, we will present a description of the
different software components that constitute the data handling section of EXTRACT.
In general, the components are organised into the following, more specific, layers:

¢ Ingestion: This is a process responsible for inserting the data into the EXTRACT
platform. It includes the transfer of data into the data layer and the associated
pre-processing tasks necessary, which include metadata generation and
extraction.

+ Data and metadata layer: This layer includes all software solutions that store
data in the platform. The data layer is essentially a data lake that includes space

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

for bulk data in Object Storage and time-based information in a Time Series DB.
The Data Catalog stores all the metadata relative to the data in store and
provides the necessary means for data discovery and searchability. Metadata
includes information of two types: that relevant for data identification (names,
origin, history, etc.) and that relevant for the applications that process it
(indexes, metrics, methods or procedures, etc.).

Semantic layer: Provides a smart way to integrate and retrieve data from the
data layer by creating and maintaining logical relations between different pieces
of stored data. It is tightly coupled with the domain of the application using the
data.

Data staging layer: This layer manages a scalable solution that provides
elastic methods to effectively prepare data stored in the data lake for the data
mining frameworks, where it will be mainly processed. This includes tasks such
as data partitioning, filtering, or transformation (such as ETLs). The objective
of this layer is to provide staging in an elastic, data-driven, and smart fashion,
meaning that compute resources destined to staging data dynamically match
the requirements of mining applications and their input data volume.

Data mining layer - framework integration and workflow definition: This
layer manages the main data processing aspect in the EXTRACT platform. It
deals with the overall method for workflow definition and the use and interaction
of the different tools and frameworks for data mining.

Data security, privacy, and integrity: security is transversal to the the
EXTRACT platform. This layer includes tools and mechanisms to secure data, its
privacy, and its integrity across all the different components in the platform.

The data infrastructure components (such as data staging methods and semantic
engine) together with the data mining components (analytics and ML frameworks) will
be utilised by EXTRACT workflows through the workflow orchestrator described in
D3.2. Additionally, the compute substrate where all these components run will be
managed seamlessly over the continuum as described in D4.2.

2.1. Data & Metadata Layer

Object Storage

As outlined in D2.1, the adoption of S3-compatible object storage as the central data
backbone fulfils the comprehensive data handling requirements in the project. That
makes S3-compatible storage the best option for massive data sets. Organising data
as objects in flat rather than traditional file hierarchies, ensures a simplistic and
scalable access to data in distributed settings. It fully complies with the explicit
requirements of the project. Object storage provides data integrity, and allows simple
geographical data distribution, meeting key Extract data needs such as high
availability, scalability, and security as identified in D2.1.

Time series DB

Time series databases (TSDBs) are specialized database systems optimized for storing
and managing time-stamped data. Such data can represent measurements, events,
or observations sequentially ordered by time, making TSDBs particularly suited for a
wide range of applications, from financial market data analysis to IoT device telemetry
and environmental monitoring.Time series databases play a crucial role in handling
dynamic, continuously evolving data that is inherently temporal in nature.

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

Key Features of Time Series Databases:

Efficient Storage: TSDBs are designed to store large volumes of time-stamped
data efficiently, using compression algorithms and data structures optimized for
time-based querying.High Throughput: They can handle high write and read
throughput, accommodating the data velocity typical in real-time monitoring
systems and IoT applications.

Time-Based Queries: TSDBs support queries that are time-centric, such as
aggregating data over specific time intervals, computing moving averages, or
finding time-based patterns.

Data Retention Policies: They often offer automated data retention policies,
allowing for the ageing out of old data to manage storage requirements actively.

Data Catalog

A second integral part of the EXTRACT data backbone is the global metadata catalog.
This catalog leverages the positive attributes of S3-based services and introduces a
comprehensive global management system for metadata. The goal is to enhance the
efficiency of search functionalities across different service providers. In terms of
implementation, the model consists of three core resources (Figure 2.1.1):

1. data-object: This resource acts as a proxy for data stored in an S3 bucket/object
from a specific provider. It manages the lifecycle of S3 objects, simplifying data
upload and download processes.

2. data-record: This resource allows users to add additional, user-specified
metadata for an object. Enabling the attachment of rich, domain-specific
metadata to objects enhances the precision of searching for relevant data.

3. data-set: This resource defines dynamic collections of data-object and/or data-
record resources through filters. Administrators, managers, or users can define
these collections, providing a flexible and customizable approach to data
organization.

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

API APL API

4

Data Set layer (Filters for }

creating collections of data

3 records)
) \V4
Data Record layer (provides additional, user-spec?fied }
metadata for data. Used for future "smart" searching)
.
) %
Data Object layer (proxy for data stored in a bucketfobject within S3 or Tlme

Series DB ..

m /—\//_\.
::53 storage 1: :‘53 storage 2:

Figure 2.1.1: Data Object, Data Record and Data Set layers

Collectively, these resources establish a versatile data management framework
applicable to EXTRACT use-cases. The typical workflow involves creating a data-object
(implicitly creating the S3 object), optionally adding metadata using a data-record
object, and finally, finding and using the relevant data-object resources included in a
data set. Nuvla facilitates the "using" element by binding data types to user
applications capable of processing the data, offering seamless integration between
data management and application utilization.

2.2. Semantic Layer

The Semantic Layer, an integral component of the EXTRACT framework, aims to enrich
and contextualize the data harvested from diverse sources, thereby facilitating a more
nuanced and comprehensive analysis. By leveraging advanced semantic technologies
and ontologies, this layer provides a structured and meaningful representation of data,
which is pivotal for achieving nuanced insights and actionable intelligence in real-time
scenarios.

2.2.1. Ontology-Driven Data Integration

At the heart of the Semantic Layer is the utilization of ontologies - structured sets of
terms and concepts representing the domain knowledge. These ontologies serve as a
model backbone for integrating heterogeneous data, ensuring that information from
disparate sources is harmoniously blended and semantically enriched. This integration
not only encompasses data harmonization but also involves inferring new knowledge
by exploiting the relationships and rules defined within the ontologies.

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

2.2.2. Semantic Annotation and Reasoning

To further augment the data with semantic depth, the layer employs semantic annotation
processes. These processes tag data elements with ontology-defined concepts, effectively binding
them with domain-specific meanings. Coupled with semantic reasoning, this enriched data
undergoes a layer of logical inference, uncovering implicit relationships and deducing new facts
that were not directly observable from the raw data. This annotated data is then enriched through
logical inference enabled by reasoning engines like Pellet and HermiT, uncovering hidden
relationships and deducing new facts. The Virtuoso triplestore acts as a robust repository for this
semantically rich data, supporting efficient storage and SPARQL querying capabilities. Standards
such as RDF, RDFS, and OWL provide the foundational framework for data modelling and
representation, ensuring uniformity and comprehensibility across the semantic web. Additionally,
the RDFLib Python library offers versatile tools for transforming and manipulating data into RDF
format, enabling seamless integration and application development within this enriched semantic
ecosystem. Together, these technologies form a powerful infrastructure for enhancing data with
semantic depth, fostering advanced analysis, and facilitating knowledge discovery.

2.2.3. Support for Dynamic and Extreme Data

Given the project's focus on managing extreme data scenarios, such as those
presented by personalized evacuation routes in crisis situations, the Semantic Layer's
design is inherently dynamic. In particular, the ontology implemented is able to
manage dynamic information with their time of arrival (timestamp).

It is also capable of adapting to the rapid influx of high-volume, heterogeneous data,
ensuring that the semantic enrichment processes scale efficiently and remain
responsive to the evolving data landscape. This is ensured by the ontology design and
the adoption of scalable triple stores.

2.2.4. Facilitating Advanced Data Analysis

By providing a semantically enriched and unified view of the data, the Semantic Layer
significantly enhances the analytical capabilities of the EXTRACT platform. Analysts
and data scientists can leverage this unified view to perform complex queries and
analyses that span across multiple data sources, extracting insights that would be
challenging to obtain from non-semantic, siloed data. Furthermore, this semantic
foundation enables the application of advanced Al and machine learning algorithms,
driving innovative solutions tailored to the specific needs of crisis management
scenarios.

2.2.5. Infrastructure Optimization and Performance

The Semantic Layer is optimized for high performance and scalability. It employs state-
of-the-art semantic indexing and caching techniques to ensure that the semantic
operations — from data integration to reasoning — are performed with minimal
latency, thus supporting the real-time requirements of the EXTRACT platform. This
emphasis on performance optimization ensures that the system remains robust and
effective, even in the face of data-intensive challenges presented by extreme data
scenarios.

10

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

2.3. Data Staging

The data staging layer is the link between the data storage components in EXTRACT
and the data mining layer. Its objective is to prepare the data for its easy consumption
by the data processing applications by applying simple data management logic and
data partitioning. It has two key goals: data preparation and automatic data-driven
resource provisioning.

For data preparation, the data staging layer must be able to support different data
transformations required by the mining layer. This includes tasks like filtering, small
aggregations, or combinations, and typical ETL operations. However, the most
important task is data partitioning, which will allow the EXTRACT platform to support
big data sets (Extreme data) by splitting the load into multiple, parallel workers.

On the other hand, to apply these data operations effectively on highly variable
Extreme data, it is necessary to rely on a computing substrate that is able to quickly
match such varying demands. To this end, the EXTRACT data staging layer includes
a new tool for the smart data-driven provisioning of resources that is able to scale
resources dynamically to match the needs of the different applications based on the
demands and data volume of each particular execution.

In this document we report our first exploration and implementation of such a smart
provisioning tool, which we evaluated against one of the project’s use cases (Section
6.1): the data intensive processing of TASKA use case C.

2.3.1. Lithops data-driven smart provisioning

To find the right number of workers to perform a distributed data processing task is
hard. Typically, analytics frameworks split the workload by chunking data in a
predefined partition size (a global chunk size) and create as many subtasks as happen
to be needed. However, this is usually suboptimal for most applications. Optimal
problem partitioning usually depends on the data volume, but also on the
characteristics of the process at hand and its particular requirements. Importantly,
the compute resources underneath, and hence the available workers that run the
tasks, may behave differently for each process they run, meaning that the amount of
data they are capable of processing varies from task to task. This decision increases
in complexity when dealing with extreme data, not only because of the huge volumes
of data to manage, but because of the variability of it, which requires a fast and optimal
configuration of resources.

With the aim of simplifying these decisions, we study and prototype a data-driven
smart provisioning layer on top of the Lithops tool-kit to enable dynamic and intelligent
decision-making in worker provisioning, customised to the demands of extreme-data
applications. In the world of data-intensive computing, clearly exemplified within
Extract by the TASKA C use-case, the ability to efficiently process vast amounts of
data is really important. This efficiency is not only about handling the data, but doing
it in @ manner that is both time and cost-effective.

Taking a step back, to scale a process in a single machine, you would typically scale
the machine vertically. Also known as scaling up, it refers to increasing computing
power by using a bigger machine. Since machines have a limit to how big they can be,
you may reach the point where you scale horizontally. Also known as scaling out, this
refers to increasing computing power by utilising more machines and distributing the
workload along them, each processing a slice of the problem. Each strategy offers

11

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

different advantages and inconveniences, and it is possible to combine them, creating
a complex trade-off. In the case of scaling out, partitioning input data has a
computational overhead and requires specialised tools to read data in diverse formats,
on the other hand, scaling up may not be always available, become difficult to manage,
and it is also possible that the task does not completely utilise the resources well or
the overhead of managing work within such a big process becomes too big.

The Lithops data-driven smart provisioning layer aims to navigate these trade-offs by
leveraging real-time data and application-specific requirements to make informed
decisions about the optimal scaling strategy. Whether it is determining the appropriate
size of workers or the number of workers needed, this intelligent layer addresses the
problem by assessing the current context to optimise resource allocation. This is done
to enhance performance and cost-effectiveness of the data processing tasks.

2.3.2. Smart decisions for compute scaling and provisioning

To find out what is the best approach (in terms of number and size of workers), for
each data-processing task we must take a decision. Lithops will use different sources
of information to keep these decisions informed and effective.

Task Profiling
Task throughput

Waorker cost
Partitioning time l
Data Properties

Dataset size Declsion:
No. MS > Gata-staging T » MNumber of workers

Other metadata Runtime memory

Cluster Info
Worker availability

Cluster state

Lithops

Figure 2.3.1: Lithops smart-provisioning layer decisions.

Figure 2.3.1 provides an overview of the decisions the Lithops smart data-staging
layer has to make as well as the inputs considered. The Lithops data-staging layer
should make a decision, which is the number of workers as well as the runtime memory
to process the data. The objective of the Lithops data-staging layer is to adapt the
provisioning of resources to the specific requirements of the computational process.

The goal of the smart data-staging layer is to enable a pipeline or workflow to make
better decisions that minimise some objective function based on input variables, much
like an optimisation problem. The goal is to minimise the objective function (which is
execution time, cost) based on the previously defined inputs.

The smart data-staging component has to make a decision for each process that needs
it, and executes before it happens to choose the optimal configuration, this is because
pipelines/workflows have intermediate steps whose requirements are not known
beforehand, and their data and computational requirements vary from each other.

The inputs to make the decision can be seen in Figure 2.3.1, those are the cluster
information, which gives information of the current cluster state and available
computing, the data properties, which is the data to be processed by the

12

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

pipeline/workflow and the task profiling, which is created by previous executions and
gives an idea of the scalability of a given process. A more detailed list of those items
that Lithops should consider to make decisions are:

¢ Data volume and format (input dataset)

e (Cluster capacity / available worker configurations

e Task worker throughput (MB/s) in a particular configuration (e.g., 1 CPU, 1GB
RAM) and other performance metrics (from a history of executions)

e Cost of workers based on their configuration (either monetary or resource
occupation)

e Time and cost of partitioning the data format

e Ingestion time for a particular worker configuration

e Deadline / time objectives

The cluster capacity and available worker configurations represent the current state
of the cluster, this will aid the decision making process and limit its search space. Task
worker throughput is a type of dynamic input which depends on previous executions,
it changes and converges to a value with more executions. Time and cost of
partitioning is the time it takes to partition a given dataset in different chunks,
ingestion time is the time it takes to process a given chunk/dataset for a particular
step and worker configuration and finally, deadline/time objectives is the deadline for
a given step to process the data, all these parameters affect the decision-making of
the smart data-staging layer.

Some of these inputs are static, meaning that they are not refined and subject to
change, and some are dynamic, which can be updated across multiple executions. An
example of this is the task profile, where the throughput converges to a value the more
data from different executions we have.

Finally, the decision-making process evolves with each pipeline execution, it relies on
the continuous feedback loop to use the outcomes of past executions to inform future
executions and make them cost and execution time effective.

2.3.3. Smart provisioning tool API

The Lithops data-driven smart provisioning layer aims to create a set of functionalities
that enable dynamic decision-making for optimal runtime memory and chunk size
based on the specific requirements of each task. The goal is to make this as
transparent as possible for the user, and thus its utilisation will be integrated into the
Lithops existing API. In particular, smart provisioning will be applied to calls to the
Lithops “map” primitive, taking the function (task) and input data to make its decisions
on the most efficient worker configuration.

Internal to Lithops, the smart provisioning API is designed to integrate into the Lithops
framework as a plug-in, offering a mechanism to analyse, predict and apply the most
suitable configuration for distributed tasks. This integration is important for enhancing
the efficiency and scalability of data-extreme applications, especially those that are
subject to the complexities of processing extreme data volumes under varying
computational demand.

Lithops will only need to feed the data and task properties and the cluster information
to the smart provisioning tool before each execution. By understanding the specific
demands of each task, the API can accurately forecast the resources required to
execute the task efficiently.

13

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

The provisioning tool leverages a database of historical performance metrics and
current system state information, including available cluster capacities and worker
configurations. This data is critical for the decision-making process, allowing it to
consider past performance trends and current resource availability in its calculations.
By correlating this information with the task’s requirements, the tool can identify the
most cost-effective configuration.

Once the optimal configuration is determined, the tool returns to Lithops the optimal
plan of data partitioning or distribution so that Lithops can provide and run the correct
worker configuration. This method makes sure that each job is provisioned with the
ideal worker configuration and parallelism. Since it is automatically applied to Lithops
executions, it significantly reduces the operational cost of managing the scale and
configuration (right-sizing) manually for each application.

2.3.4. Next steps

At this point, we have achieved a new tool for smart resource provisioning for data
staging tasks in data processing workflows. However, its applicability and ease of use
is still limited and requires further work to achieve the objectives of EXTRACT. For
instance, the decision tool requires a manual task profiling run beforehand that feeds
the automatic scaling decisions. Also, the tool only applies a general optimization of
cost and time that tries to minimise both variables, but it does not take into account
other possible restrictions such as execution time objectives that may be crucial for
time-constrained applications. In the remainder of the project, we will keep working
on these lines to explore solutions to these problems by evolving Lithops and the data-
driven smart provisioning tool.

In summary, we plan to enhance Lithops with the integration of advanced resource
usage monitoring and automatic task profiling capabilities, as well as introducing the
ability to specify an execution deadline for task execution, which affects the scaling
decision made by the smart data-staging layer. The objective is to further automate
the optimization of resource allocation. This way, we aim to eliminate the need for
manually trying different configurations, and systematically explore configurations for
a better, and less involved, exploration that yields better execution efficiency.

In more detail, we will first work towards adding resource usage and monitoring to
capture detailed metrics on CPU, memory, storage and network utilisation for each
task executed with the Lithops framework. This will work in combination with available
system monitoring resources and will provide a standard way to characterise tasks to
then create profiles that the smart provisioning tool can leverage.

Next, we plan to build automatic profiling into Lithops to simplify the task of
recollecting this information automatically. Further, this automatic process will keep
updating task profiles as tasks are run to further improve their characterisation and,
therefore, the accuracy of the smart decisions.

By enabling users to specify task execution deadlines, we can further influence the
decision tool for a more precise provisioning. A time objective means that some of the
available configurations should be discarded early if they cannot meet it. This clearly
changes the decision behaviour as it restricts the solution space. We believe this will
be an important feature to resolve the time constraints specified for TASKA in D1.1.

Finally, we also found evidence of the importance of partitioning in scaling data
processing applications. The worker configuration analysis in Figure 6.1.4 considers

14

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

only a static partitioning technique that requires running beforehand and creates a
copy of the whole dataset with the appropriate splits (data duplication). In the future,
we will explore the inclusion of dynamic partitioning techniques, which avoid
duplicating data in storage and enable faster partitioning times by creating virtual
slices of data instead. This is done by generating navigable data indices and calculating
data pointers. Implementing dynamic partitioning not only will allow faster partitioning
times but also improve system scalability.

3. Data Mining
3.1. Overview

In this Section we discuss the workflow aspect of data processing in EXTRACT, with
specific facets that pertain to Machine Learning (ML) support. As explained in the
previous Section, datasets are first-class citizens in EXTRACT. An EXTRACT workflow
may begin with some input datasets, and may generate datasets as part of its
operation, in addition to other types of results (e.g., visualizations, notifications to
external systems). Figure 3.1.1 below demonstrates the execution of an EXTRACT
workflow as execution of one or more data processing steps. The actual orchestration
of the workflow is discussed in D3.2.

UDT, Simulator

’ Results I

DataPlug
Results
1l Big Data -

MARL

Registration,
Schema,
Index
Generation

External Raw /

Input Data I
Data Catalog

Data Lake

Kserve

Results
> —
>

- Model
Repository

Notifications

Figure 3.1 Data Mining Workflow Execution

As explained in Section 3 above, each dataset, whether created by a workflow or
introduced from an external source, needs to undergo ingestion, which registers the
dataset in the catalog of the data lake, and also builds and registers metadata
descriptors, indices and other relevant details. Thus, ingestion as a workflow step may
occur in the beginning of the worklow (e.g., for input data) and at every processing
step that generates a new dataset, as explained further below.

Once the dataset is ingested, it becomes part of the EXTRACT data lake. This is true
for any kind of dataset, and in particular, machine learning models. EXTRACT allows
regarding models-as-data, which means encoding the model (inference algorithm) as
a set of parameters, depending on the type of model being used. For example, a neural
network can be encoded as a tensor (multi-dimensional array) of numerical weights,
each pertaining to an edge between neurons. Models are stored in the model repository
part of the data lake.

15

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

A workflow step may use one or more datasets from the data lake as input. Some of
the data may be used as-is, whereas other data may require application-specific
semantic representation, as is demonstrated in D1.2 for the PER use-case. This uses
the semantic layer described in the previous Section about Data Infrastructure

The actual processing of a workflow step in EXTRACT may consist of different
implementations depending on the specific application. It may involve generic ETL
(Extract-Transform-Load) using the data staging facilities (see Section 3.3). This is a
kind of processing that may consume datasets and creates new datasets. In EXTRACT,
we use the same staging component, Lithops, to that end. Another option is to train
a model, which is a new dataset and should therefore be ingested after being created.
This is accomplished in EXTRACT using PyTorch. Last, it may serve a model, i.e., make
it available for inference. This could be an online model service (as discussed further
below). In EXTRACT, we use serverless Kserve for online serving. Alternatively, offline
(batch) inference can also be done using PyTorch or Lithops and an input dataset, with
the result dataset undergoing ingestion. Using this basic components can be later on
expanded to complex workflows for online serving (e.g., combining multiple models).

3.2. Dataset Ingestion

The data ingestion process is essential for data management in a data lake, and as
such, an important part of the EXTRACT architecture. It encompasses the acquisition,
registration, and initial processing of data from the sources.

Overall, there are two main objectives in the ingestion process: metadata acquisition
and data preprocessing. The specifics of these processes depend on the particular data
formats being ingested and the procedures, workflows, or applications that typically
process them.

In the case of metadata acquisition, information relative to data is provided along data
insertion to the system, or extracted automatically from each dataset during the
ingestion process. E.g., these metadata may include simple naming and tagging of
datasets, location, and other characteristics of the conditions where it was generated
and by who. These and also more complex properties enable the data to be identified
and retrieved effectively from the data lake, and feed the basic features of the system
to enable data discovery, localisation, and searchability. Further, this information may
be required later by the data mining workflows. Interestingly, the data mining
processes may require specific information or even the generation of indices that
enable efficient navigation within the data set. These types of complementary
information and indices are also generated during the ingestion process.

As for preprocessing procedures, some data formats and/or some data mining
workflows require some data preparation or transformation that must be applied
before the dataset is inserted into the data lake. Some examples of these
transformations could be data filtering or compression that helps optimise storage
utilisation and data retrieval. The nature of these preprocessing tasks varies according
to the needs of the data type and format and aids the subsequent processing steps.

Ingestion may run anywhere in the continuum (edge to cloud) as detailed in D4.2. The
ingestion processes are containerised to be deployed on the compute substrate in any
continuum site and to be scaled dynamically to the income of data into the EXTRACT
platform.

16

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
eeeeeee data across the compute continuum

3.3. Model Repository

EXTRACT employs a model-as-data approach, where machine learning models are
encoded as data files. Encoding is one of several options, such as algorithm arguments,
e.g., the weights of a neural network, or as serialized code, e.g. pickled Python. There
are several common formats for storing mode data, such as HDF5, JobLib, etc. In
EXTRACT, we chose to start with Open Neural Network eXchange (ONNX - spelled
“onyx”), which is one of the most popular formats, supported by many platforms
(including PyTorch), and can be converted to and from many other formats.

Having the models encoded as highly-compatible datasets opens up several important
capabilities: they become portable, can be delivered to different exploiters, e.g., for
inference or tuning regardless of the recipient software. They can also be versioned to
indicate model evolution, and moved closer to where they are needed.

When models are created in EXTRACT, they are stored in the model repository - a
section of the data lake (typically, S3 bucket) that is set by the user’s application to
be used by both training and inference/serving. When a new model is created or
updated (new version), it is stored in the respective model repository and ingested.
Then, a recipient may subscribe to notifications on that repository and be notified by
the catalog of the availability of the new model or version, and be able to access it.

3.4. Model Training

For the model development and training, we employ PyTorch, a leading deep learning
framework known for its flexibility and efficiency. PyTorch provides us with flexible
tools for building and training neural networks, allowing us to experiment with various
architectures and optimization techniques.

Our model comprises two neural networks, each consisting of three linear layers.
These networks are designed to extract features from the input data and make
predictions based on the learned representations. The detailed explanation of the
model architecture and algorithm can be found in D1.2. The number and type of layers,
as well as hyperparameters such as learning rate, batch size, and hidden size, can be
easily modified to fit the required use case.

The trained model is ready to be exported using the ONNX format, facilitating
integration into various deep learning frameworks such as TensorFlow. This
exportability allows developers to deploy the model across different environments and
use cases.

Additionally, RAY is used to scale the training process seamlessly across multiple
machines or GPUs. RAY allows to efficiently parallelise computations, significantly
reducing training time while maintaining resource utilization.

3.5. Model Serving

EXTRACT model serving (model inference as a service) is implemented through
Kserve, which is an open-source model serving solution. Kserve is in fact a "meta-
model server”, in the sense that it wraps concrete model servers in an elastic
deployment that can scale out or in according to inference request demand.

17

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR[!I\CT

A distributed data-mining software platform for
exireme data across the compute continuum

The architecture of Kserve is shown in Figure 3.5.1 below. A first point to notice is that
Kserve can serve models produced by all the major model training platforms in the
markets (e.g., TensorFlow, PyTorch) and all the common formats (incl. ONNX). This is
because Kserve embeds concrete model servers that are compatible with all the
formats, such as Nvidia Triton MLserve, and many others.

Compute cluster
GPU, TPU .CPU

Figure 3.5.1 KServe Architecture

Second, note that Kserve typically uses Knative and Istio for a serverless deployment.
Kserve predictors (models hosted on model servers) are deployed as Knative services,
which allow scaling them dynamically out (increase the set of predictors) or in
(decrease). The scaling is governed automatically by responding to changes in request
load, detected by Istio. This allows Kserve to dynamically balance responsiveness and
resource consumption / footprint.

Last, note that Kserve is capable of leveraging accelerators such as TPU and GPU for
inference. This is important for reducing computation latency for some EXTRACT real-
time applications, as described in D2.1.

Note that D2.1 suggested ModelMesh as a solution for efficient elastic large-scale
model serving, whereas in this document we switch to serverless Kserve. Both
solutions are large-scale, elastic and performant. However, they operate based on
different principles - ModelMesh uses LRU cache for managing model elasticity,
whereas Kserve uses serverless principles of response to demand. The switch was
triggered by partner (IBM) interest change and by ModelMesh becoming less popular
and attractive to developers compared to Kserve.

3.6. Semantic Logic

This is a logic level that transforms or augments the loaded data in the application
domain prior to processing. This maps to the Semantic Layer introduced in the previous
Section for Data Infrastructure. It can be an intermediate step in a workflow if required
by the application.

18

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework

EXTRACT

A distributed data-mining software platform for
aaaaaaaaaaaaaaaaaaaaa pute continuum

4. Data Security, Privacy, and Integrity
4.1. Data Security

The general high-level Cybersecurity Architecture and Requirement of the EXTRACT
platform are detailed in the deliverable D4.2, which encompasses data security aspects
besides general cybersecurity, system security, software security and pipeline security
considerations. However, we outline here certain cybersecurity requirements and
architectural choices that are relevant specifically to Data Security as such, and these
should be interpreted from the perspective of data processing along with some data
privacy considerations. Nevertheless, data privacy deserves a separate consideration
and therefore is outlined in a dedicated section focusing on specific data privacy state-
of-the-art techniques.

19

Data Security (data-at-rest): EXTRACT architecture combines a high number
of varied components (either local or distributed) that have communications
needs in terms of data planes, control planes, and orchestration. Therefore, one
of the main security requirements is to ensure that the communications occur
in a uniform, interoperable and secure manner, and that the security and
integrity of the data is also ensured. Also, it is important that the security of
those communications is underpinned by state-of-the-art security parameters
and configurations recommended by leading standardization bodies (e.g.,

NIST).

O

o}

O

Whenever practically possible and applicable, all the data should be
stored on encrypted volume files, whether those are native 0OS

filesystems,

ObjectStorage native encryption overlay, or encrypted

docker volumes.

Data security for "RL Agent(s) (inference)” considerations

Any “model file” must be accompanied with at least its SHA256 (or
SHA512) check value (usually in Linux stored as some-file-
name.txt.sha256asc or some-file-name.txt.sha512asc)

The type of hash, SHA256 or SHA512, MUST NOT be
hardcoded and MUST BE a configuration value to allow
easier change, easier testing and security-future-proof
upgrades

Every time when loading any “model file”

According to hash type, check if corresponding sha256asc /
sha512asc file exists for the given model

If sha256asc / sha512asc does not exist, fails to load (empty
or bad permissions), or the SHA256/SHA512 value of the
model files differs from the value supplied inside its
corresponding sha256asc / sha512asc file | DO NOT LOAD,
display error/warning, continue/exit gracefully (depending
on the criticality of failed-to-load file and the design of the
module)

NOTE: Because reading/loading large files and computing
hash value of large files has performance/time/resource
cost, it is advisable to design “read-and-hash-and-
checkhash” routines (should be possible in most modern
programming languages) that would read the bytestream of
a file and compute hash at the same time

General Data Integrity considerations

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

Data Integrity is one critical component and requirement for an
overall trustworthy computing environment - in the end, if data
integrity cannot be guaranteed/verified or at least data tampering
detected, how can a system be trustworthy?

For MVP, the general concept is to use non-weak, state-of-the-art,
industry standard hashing algorithms, such as SHA256 with
preference and compatibility towards SHA-3 families such as
Blake3. The current industry standard is to use SHA256 and this is
a baseline that is also used for the EXTRACT platform cybersecurity
architecture requirement. Nevertheless, we aim for Phase3 and
Phase4 consideration and evaluation (especially performance
impact) for using Blake3 in certain, or all, parts of the system
(depending on their ratio of computational power vs. their data
integrity realistic risks).

For PER use-case, it was concluded that data integrity is important
in all aspects and data flows, but most importantly in the
"instructions to users" and "users location and meta-data" set of
data fields, therefore API-level data exchanges (e.g., JSON) are to
be additionally digitally signed at the "application layer" (in ISO
OSI 7 layers terminology) using for example ECDSA.

For TASKA use-case, it was concluded so far that data integrity is
generally important (but not absolutely important as in "life-and-
death" scenarios of PER use-case), while data privacy is not
considered a risk nor a strong requirement. However, given the
extreme volumes of data, it is impractical (and most likely
infeasible) to hash and/or digitally sign ALL the TASKA Raw Data,
therefore only certain parts and fields of the post-processed data
will be subject to strong hashing and digital signatures, in addition
to TASKA-specific non-corruption checks of
filesystems/directories/files using (and improving) TASKA/OBS
internal tools that exist already.

4.2. Data Privacy

Data Privacy ensures the privacy of individuals by protecting their sensitive data.
Privacy can be achieved by combining different implementations and avoiding
collecting unnecessary data so it can be divided into privacy by design or by default.

1.
2.
3.

1.
2.

Privacy by Design

Communication only under https protocol
Anonymization/pseudo-anonymization of data
State-of-art privacy implementation (GDPR Compliant)

Privacy by Default
Minimize the amount of data harvested
Minimize the Time to live of the personal information

EXTRACT intends to follow best practices to ensure data privacy when arriving into
production where real users data shall be used (mainly in the PER use case). However,
EXTRACT will also contribute to the research and implementation of state-of-art
privacy preserving techniques before using the real users data. Differential Privacy is
hugely used to ensure the privacy of individuals in any datasets. The main idea is to

20

D2.2 First Release of the EXTRACT Data Infrastructure and
Data Mining Framework

give a modified version of the data that can preserve the general information of the
original data but with no link to any individual record or user. Which data is considered
sensitive and needs to be protected will be clearer through the life of the project and
need to be discussed with the Ethical Manager of EXTRACT, however, the first scan of
the existing methods and techniques shows that users location might be sensitive
information depending on the use of the location. This need allowed to envision two

different scenarios as follows:

Figure 4.2.1 shows the first scenario where the involved parties in the PER use case
are concerned with privacy preservation, which are the mobile phones of the users,
Venice city and BSC as the model provider to be using the users data. The main steps
of the scenario are:
1.
2.

3.

21

First scenario:

e

E>

(Venice
|I| Grouping
i

|z| Differential
| Privacy
=,

=

EXTRACT

A distributed data-mining software platform for
exireme data across the compute continuum

) 1:1
o |E| Mapping
/ Iz' Differential l;'rivacy Ei1:1 Mapping
Input Group Qutput Group Input Gro! Output Group
N m\\ 5
% VACAN] \ v AN
o @ L%) § oy)
(e @~ .
\ 2 0 L")

Grouping of the users geographically

Differential Privacy by sending the same number of users in each group but with

slightly different locations (by adding random noise)

The mapping between the original locations and the Differential Privacy locations

to send back the reply to the users

Second scenario:

T

>
%>

Mobile Phone
3 m)

@ Differential
Privacy

\/____

=

|z| / Differential Privacy

My Location

/‘\°f 9
¢ 9

e 9

Send N other locations

Figure 4.2.1: the first scenario of Differential Privacy

Figure 4.2.2: the second scenario of Differential Privacy

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTRI!I\CT

A distributed data-mining software platform for
exireme data across the compute continuum

Figure 4.2.2 shows the second scenario where the involved parties in the PER use case
are only the mobile phones of the users and BSC. The main steps of the scenario are:
1. Anonymization of the user/phone identity
2. Differential Privacy by sending the location of the phone with N other locations
generated randomly near the original location

Comparing the two scenarios is presented in Table 4.2.1.

Scenario 1 Scenario 2

One request by group N+1 requests by user

A server is needed in (or owned by) Venice No server is needed in Venice

Position info is not necessarily private to Venice | Position info is also private to Venice

Table 4.2.1 comparison between the two proposed scenarios

4.3. Model and Computation Protection

The Multiparty Computation (MPC) is used mainly for data/model security, to ensure
the data and the model weights to be secure during computation while protecting the
model against counter examples. This computation is used when more than one party
or entity wants to perform a common task or computation without sharing their assets
(data or model), where they all have the final result decrypted. These parties can
provide data, model or function or just computation resources.

Participants Secret Sharing Local Result

h =)

Data Owner 1

=) (-0 &

1
Data Owner 2 .

N /
/ % e
Encrypted Result
9 0
3]

Decrypt l
\ Data Owner 3 Machine 3/
| -

On every machine
.ﬂ T ‘ - 4
(2K

Figure 4.3.1: the general view of Multiparty Computation (MPC)

'-'E] e (4]

Machine 1

N
Cl

Result Assembly

Machine 2

Broadgast

Broadcast

Data Owner n Machine n

22

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

Figure 4.3.1. Shows the steps of the MPC protocol, assuming that every party involved
in the computation will participate with a machine that they own totally (each machine
is owned only by its owner). The main steps of the protocol are as follows:

1. Data/Model owner has a dataset or a model to participate in the computation,

these datasets will be partitioned randomly into shares

2. Each party will send the shares to the other parties, as the shares are random,
the other parties can not get any information about the original data just from
the received share
Each party has a share from each other party
Each party locally computes the results of the received shares and model
Each party broadcasts the result to the other parties
Each party can reconstruct the whole encrypted result from all received parts
Each party can decrypt the encrypted result to have the meaningful result

NousWw

5. First MVP

5.1. Restrictions & Relaxations

The objective of the first MVP is to demonstrate basic capabilities of the EXTRACT
platform. In that sense, we do not expect to see full end-to-end component integration
but rather provide a sense of what the eventual system would be with independent
illustrations of specific components. In coordination with D4.2, the MVP for WP2
includes a collection of core components (catalog, Lithops, model serving - Kserve,
model training) in accordance with the agreed delivery level for this deliverable (R -
report). Beyond the agreed level, we provide demonstrators based on voluntary will
of partners.

5.2. Demonstrator — ONNX Model Serving on
Kubernetes using Serverless KServe

As already mentioned in Section 3.5 we use serverless Kserve for online serving in
EXTRACT. We point the reader to Section 3.5 for an overview of Kserve.

5.2.1. Demo Story

The demonstration is about showing how the Kserve stack can be installed and how
inferences can be sent for a model in ONNX format. More specifically we will
demonstrate, after setting the InferenceService machinery how inferences can be sent
through a Jupyter notebook.

In the demo setup, we show in a linux environment (Fedora 39) how to create a single
node kind cluster and how to install Kserve on this cluster.

We then show how to create the InferenceService that will handle the inference
requests sent, in our case, through the Jupyter notebook.

23

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-minin: g software platform for
extreme data across the compute continuum

5.2.2. Demo Execution

Environment. Prepare a Linux environment which can be a bare metal machine or a
VM. This environment assumes that kubectl has been installed (we used latest version
v1.29.2) and that its current context is a Kubernetes cluster (a single node as can be
obtained with kind is possible). The Kubernetes server version that we used was the
version of the kubectl client.

Setup. you need to prepare:

1.

Execution:
1.

3.

24

kubectl tool
We followed the instructions detailed at Install and Set Up kubect| on
Linux | Kubernetes, however kubectl can be installed by using package

management as detailed in Install and Set Up kubectl on Linux |

Kubernetes
. Python tooling with Python virtual environment. We recommend

to install pyenv as a way to do this. Then, we create a Python 3.12.2
virtual env called onnx_venv using the following commands:

pyenv install 3.12.2

pyenv virtualenv 3.12.2 onnx_venv

pyenv activate skystore-test

This step may be skipped if you already have access to a Kubernetes
cluster.
Following instructions permit to create a single node cluster with kind:

a. export CLUSTER_NAME="km2"

b. Create kind cluster:
cat <<EOF | kind create cluster —-—name ${CLUSTER_NAME}
—-image "kindest/node:v1.29.2" --config -
kind: Cluster
apiVersion: kind.x-k8s.io/vlalpha4
nodes:

EOF
Install the Kserve stack as detailed in
https://kserve.github.io/website/0.11/get_started/
Note that we will use latest version of Kserve : 0.12 (it has no
documentation for now)

a. curl -s
"https://raw.githubusercontent.com/kserve/kserve/releas
e-0.12/hack/quick_install.sh" >
quick_install_kserve_v0.12.sh

b. chmod 755 quick_install_kserve_v0.12.sh

c. ./ quick_install_kserve_v0.12.sh

In the quite verbose output, you should see the
following lines:
Successfully installed Istio
Successfully installed Knative
Successfully installed Cert Manager
Successfully installed Kserve
Check that the out-of-the-box inference runtimes are installed:
kubectl get clusterservingruntimes -A

https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/#install-kubectl-binary-with-curl-on-linux
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/#install-kubectl-binary-with-curl-on-linux
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
https://github.com/pyenv/pyenv

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

25

A distributed data-mining software platform for
extreme data across the compute continuum

You should have 10 ClusterServingRuntimes where the one which we
will use in this demo is kserve-tritonserver since it the the only one
which can handle models in ONNX format.
4. Create a namespace (e.g., kserve-test) for our tests:
a. kubectl create namespace kserve-test
b. kubectl config set-context —--current --

namespace=kserve-test

5. Create the InferenceService
a. Create file onnx-gcloud.yaml which should contain following text

(see also the “"new schema” at
https://github.com/kserve/website/tree/main/docs/modelserving/
vlbetal/onnx)
apiVersion: "serving.kserve.io/vlbetal"
kind: "InferenceService"
metadata:
name: "style-sample"
spec:
predictor:
model:
protocolVersion: v2
modelFormat:
name: onnx
storageUri: "gs://kfserving—examples/models/onnx"

. ku apply -f ./onnx-gcloud.yaml
. Check InferenceService status with command

kubectl get InferenceService style-sample -n kserve-—
test

The status of the created InferenceService style-sample until its
status becomes ready.

Note that it may take some time (depending on network
bandwidth it may reach 10 minutes)

. Move to the onnx_venv virtual environment (see second bullet of

the setup)

source ~/onnx_venv/bin/activate

. Install the libraries that will be needed to run the Jupyter

notebook:

pip install -r ./requirements.txt
Where cat ./requirements.txt Yields:
jupyter

numpy

pillow

protobuf

requests

. We have to find out the name of the istio ingress gateway:

kubectl get svc ——-namespace istio-system —-—
selector="app=istio-ingressgateway"; echo ""

which should output something like:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

istio-ingressgateway LoadBalancer 10.96.164.164
<pending>
15021:31035/TCP,80:30468/TCP,443:31473/TCP 4h21m

g. We detect the Istio ingress gateway:
INGRESS_GATEWAY_SERVICE=S (kubectl get svc ——-namespace
istio-system —--selector="app=istio-ingressgateway" --
output Jsonpath='{.items[0] .metadata.name}"')

h. So that command: echo $INGRESS_GATEWAY_ SERVICE Yields
istio-ingressgateway

i. We now port-forward local port 8080 to port 80 of the ingress
gateway service: kubectl port-forward —--namespace istio-
system svc/${INGRESS_GATEWAY_ SERVICE} 8080:80 &

j. Before invoking the Jupyter notebook:

i. prepare a few (royalty free) images
ii. download from
https://github.com/kserve/website/blob/main/docs/m
odelserving/vlbetal/onnx/mosaic—onnx.ipynb the

mosaic-onnx notebook
k. We invoke the Jupyter notebook with command:
jupyter notebook
1. Open the mosaic-onnx notebook
m. Within the notebook you should replace the image. jpg by one of
your images
n. The final cell of the notebook should show a segmented image

5.2.3. Demo Video

The video linked below delivers the demo story as explained in 5.2.1 and 5.2.2. To
avoid a lengthy video, we skip the whole setup part and present just the demo itself,
of creating the InferenceService and issuing inferences through the notebook.

https://b2drop.bsc.es/index.php/s/bW34Agcc97taT5e

5.2.4. Demo Resources

Kserve deployment repository at GitHub:
https://github.com/ymoatti/kserve_deployment

5.2.5. Next Steps

This demo presented a basic capability of serving models. Kserve can practically serve
all models in the market, but we focus on ONNX, which is the agreed model format for
EXTRACT. There are quite a few improvements that we intend to implement going
forward with the project, including:

e Support for reading models from local S3 - Minio/Ceph

e Separating the inference from requests - i.e., not invoke inference on every
request but return a cached result until a separate trigger re-invokes inference

e Performance/utilization improvements (still TBD)

26

https://github.com/kserve/website/blob/main/docs/modelserving/v1beta1/onnx/mosaic-onnx.ipynb
https://github.com/kserve/website/blob/main/docs/modelserving/v1beta1/onnx/mosaic-onnx.ipynb
https://b2drop.bsc.es/index.php/s/bW34Aqcc97tqT5e
https://github.com/ymoatti/kserve_deployment

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

6. Evaluation
6.1. TASKA-C scalable computation using Lithops

To present and evaluate the need for a smart-provisioning layer in Lithops and show
its potential, this section explores the idea in the context of TASKA C (described in
D1.2). We will show the problems that arise in the execution of this extreme data
workflow and the benefits of adding the ability of automatically choosing the right scale
to perform its different tasks in each execution.

Roadmap

We start by evaluating the different tasks that are part of TASKA C. As described in
D1.2, TASKA C workflows are compositions of several data processing, each presenting
an opportunity for optimising its scale. We will see that the Rebinning task is specially
demanding due to being the most data-intensive one. Therefore, the next parts of this
exploration put special focus on it.

Then we continue by comparing different scale-out strategies, employing cost and
execution time minimization as our objective function. We employ a pareto frontier
analysis to identify optimal configurations by balancing the trade-offs between
execution speed and cost.

Finally, we refine our analysis by incorporating the partitioning time in the scale out
approach and comparing it against a scale up strategy, this offers a more nuanced
understanding of the scalability challenges and solutions in distributed computing
environments. This analysis ends in a set of conclusions that validate the benefits of
a smart-provisioning layer in Lithops.

Use Case Overview

Computational Requirements and Throughput Analysis

o
o
400 2 2 vCPU
4 vCPU
150 8 vCPU
o o B 16 vCPU
" ~
By &
» 300 =
< 2
a 8
= N
c 250 9 a
= S S
=] 8 I Q
Q 200 2
£ g
[=)
=}
2 150
= R
o
e
100 ~
m b IS
50 2 3 59
S
Rebinning Calibration Imaging

Processing Stages

Figure 6.1.1: Throughput per step with different VCPU configurations.

We start with the analysis of how the throughput of the current implementations of
each computational step (rebinning, calibration, and imaging) answers to varying
numbers of CPU cores (vCPUs in the cloud). The results are presented in Figure 6.1.1.

27

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

The Rebinning step exhibits an increase of throughput with additional vCPUs, which
indicates a benefit from scaling up resources. However this trend does not hold for the
Calibration step. We observe that increasing the vCPU count does not yield higher
throughput, suggesting that the calibration step does not scale with additional
computational resources, highlighting a limit on scalability. We also observe that the
calibration step throughput decreases with more vCPUs provided. This is due to the
apply calibration substep within and we will explore this issue further in the future.
Finally, Imaging does scale up, although very slightly. This suggests that the Imaging
process, although using parallelism, requires significant synchronisation that hinders
its scalability.

Given these findings, we conclude that Rebinning and Imaging benefit from a scale up
approach, while Calibration does not.

We see that each process (step) has its own particularities and their computational
requirements vary. For instance, we can observe that by providing more vCPUs to the
Rebinning step as well as the Imaging step it is possible to improve the throughput,
but at very different rates. Further, in the Calibration step, a scaling up approach does
not yield performance improvements, and thus a different strategy must be used to
correctly scale its computation. This clearly shows that provisioning the right amount
of resources for each of these steps is not general and requires a smart decision that
takes into account the particular characteristics of each task.

Data Volume Analysis

Once we understand the performance of the different steps, we also want to
understand how they interact with data. For that, we next study the pattern on data
usage as well as ratios in input and output data for each step to identify what processes
are the most computational/data expensive and ultimately identify how data volume
affects their execution. To this end, Figure 6.1.2 plots the input and output volume of
each step for processing an input dataset of close to 8 GB in a simple sequence of
rebinning, calibration, and imaging.

8000 - &80 mmm Input Data
HE Output Data
7000
6000
o
Z 5000
N
»n 4000
S
8 3000
2000
1000
Rebinning Calibration Imaging
Steps

Figure 6.1.2: Data volumes per step (input-output).

28

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

First, rebinning is the step that ingests most data at 7960 MB (the full dataset). This
is a lossy process that compresses the data, which in this case reduces the output of
the process to 420 MB.

The calibration step takes a measurement set (usually after rebinning) and adds a new
column to it. Consequently, the calibrated measurement set has a higher size
compared to the original measurement set.

The imaging process takes the calibrated data generated in a calibration step and
creates an image cube with a human-readable representation of the instrument
observation. In this case, the resulting image is 4MB in size.

We see that the steps have clearly diverse data requirements, with some of them
processing large data with lightweight computation, while others do not process much
data and are heavier on the logic. Again, this requires an informed solution that cannot
be general and strengthens the idea of a staging layer that smartly chooses the right
strategy for us not only depending on the computational needs but also on the data
processed of that step; i.e., a data-driven decision.

Finding the right size and number of workers

The Scale-Out vs. Scale-Up tradeoff

After the analysis of the different steps in TASKA C, we focus on the question of finding
the appropriate worker configuration for them. To wit, we want to know what is the
best combination of scale-up (growing the workers with more resources) and scale-
out (adding more workers). For this, we analyse the rebinning step in more detail.
First, we explore data and problem partitioning for the rebinning step to understand
how it behaves when scaling out. Then we compare it against a full scale up approach,
where the data is ingested whole on a single machine with multiple vCPUs. The
objective of these experiments is to give an empirical overview of the different options
available to the smart data-staging layer, what it will need to take decisions on, and
why it is needed in the case of workflows that deal with extreme data.

To find the best configuration of workers, we consider two variables that represent our
objective: execution time and cost. Time is a direct representation of application
performance, while cost is also important if we want to ensure efficient execution
without overwhelming our resources or wasting unnecessary energy. We want to
optimise both cost and time since the objective is to have executions that take the
least time possible at the lowest cost possible.

Cost can be calculated simply as resource occupancy for a period of time, but to be
precise, here we calculate it as the product of execution time (in ms) and the amount
of resources utilised (in MB). To simplify, we use a system akin to resource billing in
AWS Lambda, where the price is established for an amount of memory but represents
a slice of a machine including proportional memory, CPU, and network.

In this experiment, we use several worker configurations (with different memory and
proportional CPU) and plot them on the axis of execution time and cost. The first result
is shown in Figure 6.1.3, where we explore how much it takes to process a total of
1091 MB of data with configurations ranging from 1 to 9 workers. For that, a 1090 MB
single MS dataset is taken and partitioned into different chunk sizes. Then the
rebinning step is executed for the various configurations. Each configuration has been

29

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

run for 5 to 10 repetitions and the point represents the mean of the execution time
and cost, with bars showing the error in execution time (horizontal) and cost (vertical).

To find the best configurations, we may first obtain the Pareto frontier. It will tell us
the Pareto-optimal configurations for both variables. An optimal configuration is
achieved when it is impossible to improve the performance or cost-effectiveness for
one aspect (cost or execution time) without negatively impacting the other. In other
words, a configuration is considered optimal if any attempt to reduce costs or decrease
execution time leads to a detriment in the other area.

== Chunk Size: 125 MB

0.007 A T Chunk Size: 277 MB

Chunk Size: 548 MB

lozaorlﬂ, 9 workers === Chunk Size: 1091 MB
® Pareto Frontier

0.006

0.005 1 i/ 10240 MB.2workers 10240 MB, 1 workers

7076 ME 9 workers
B, 4 workers % 5

10240

Cost

5308 ME, 9 workers
0.004 4 ‘

7076 MB, 4 workers 7076 MB, Tworkers
7076 MB, 2 workers
\r 5308 MB, 2 workers 5308 MB, 1 workers
3538 MB, Prlorkers = =
0.003 1 5308 MB, A.Wt)rkers
3538 MB, 2 workers
$—— 1769 MB, 9 workers 3538 MB, 1 Workers
3538 MB, 4'workers H 1769 MB, 1 workers |

0.002 *
1769 MB, 4 workers 1769 MB, 2 worker2

20 40 60 80 100
Execution Time (seconds)

Figure 6.1.3: Pareto frontier for averaged executions of rebinning step with 1090
MB.

The Pareto frontier shows that the most optimal configurations are those that split the
input data in small chunks (125 MB or 277 MB) and use multiple (small) workers to
run the process.

This would allow the data-staging Lithops component to make decisions at runtime
based on previous executions, if the scientist needed a fast execution, the Lithops
data-staging component would make the workers as big as possible and have as many
as possible (10240 MB of runtime memory, 125 MB of chunk size and 9 workers). On
the other hand, if there is no execution deadline, the data-staging component would
choose an equilibrated configuration with lower cost (a potential heuristic could be the
point that minimises the distance to the origin, for example, and we would be
considering using partitions of around 277 MB and workers of 3 GB of memory).

Incorporating Data Partitioning Time

The previous experiments do not reflect the time it takes to partition the measurement
set of 1090 MB into smaller chunks. Data partitioning is an expensive process,
especially for extreme data, required to enable problem distribution onto multiple
workers. This process must run before the actual task (e.g. rebinning) to generate

30

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

data slices from an original file that each worker will take individually. To build a fair
comparison, we must add the partitioning time to each configuration that requires it.

For that, we have taken the casacore library and partitioned the measurement set of
1090 MB into a different number of partitions, trying also to scale the resources where
partitioning takes place (bigger VMs with higher core count). With this evaluation, we
find that creating these slices is a sequential process that does not scale with multiple
CPU cores (i.e., the process takes a similar time with 2, 4, or 8 cores). Also, the process
is mostly independent from the number of slices created, with partitioning time varying
only up to 11% from creating 2 to 10 partitions. As a context from our running
evaluation, partitioning time for an input file of around 1 GB takes between 46 to 52
seconds to complete. Of course, this process has its associated cost, which we must
consider for configurations that require it (those with multiple workers).

0.012 10240 MB, 9 workers m— Chunk S!ze: 125 MB
SRS e Chunk Size: 277 MB
8| Chunk Size: 548 MB
== Chunk Size: 1091 MB
® Pareto Frontier

0.0101
7076 MB, 9 workers+ 10240 MB, 2 workers
10240 MB, 4 workers =

5308 MB, 9 workersL

7076 MB, 4 workers ————7076 MB, 2 workers
3538 MB, 9 workersh
5308 MB, 4 workers ——5308 MB, 2 workers

0.008 4

$——1769 MB, 9 workers
——3538 MB, 2 workers

Cost

3538 MB, 4 workers
1769 MB, 4 workers

1769 MB, 2 workers
0.006 1

10240 MB, 1 workers
e

0.004 - N
7076 MB, 1 workers

5308 MB, 1 workerse:

3538 MB, 1 workerse- 1769-MB;-1-workerse

30 40 50 60 70 80 %0
Execution Time (seconds)

Figure 6.1.4: Scale up vs scale out for 1090 MB rebinning.

Figure 6.1.4 adds the time and cost of partitioning to the executions of Figure 4. This
clearly creates a contrast between the configurations that use an exclusively scale-up
approach (1 worker) against those that combine both scale-up and out (requiring
multiple workers and, thus, partitioning).

When accounting the partitioning time for scaling out, we can observe that the cost of
partitioning clearly exceeds the performance benefits of using multiple workers.
Hence, using a single worker is much more efficient in both execution time and cost,
unless the data does not fit into any available worker, where we would be forced to
partition it.

We draw the following conclusion for the rebinning process of TASKA C: given a
measurement set, it will be always better to ingest it as a whole instead of partitioning
it. Therefore, this is the decision to be expected from a smart data-driven provisioning
in Lithops. This is because rebinning scales vertically effectively, and utilises the all

31

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

cores available in the worker. However, we still must consider a limitation: if the
measurement set were big enough that it does not fit into a single worker, then we
would still need to do partitioning. This fact also gives more strength to the Lithops
data-driven smart provisioning layer, as it dynamically adjusts resources based on the
workload and computational requirements. By intelligently managing the compute
resources, it ensures that the data processing is both efficient and cost effective.

Conclusions

The experiments illustrate that there is no silver-bullet when scaling to face the diverse
computational demands presented by the different workflow tasks. This variability
demonstrates a critical need for a provisioning layer capable of dynamically selecting
the most appropriate strategy in real-time, customised to the computational as well
as data demands of each task. On one hand, some tasks may require more or fewer
computational resources for the same volume of data based on the characteristics of
its logic (compute or data-intensive). On the other hand, there is data variability,
where each task execution may have huge variances in its data demands and require
adaptive algorithms that efficiently manage the vast ranges of data sizes. This shows
the need of an orchestration layer that can intelligently adjust to both computational
demands and extreme data.

In our exploration, we have also seen that manual configuration and decision-making
are time-consuming and also prone to inefficiencies. The smart provisioning layer
envisioned in the Extract project will eliminate these challenges by automating the
decision-making process, leveraging data properties, historical execution information,
and the current resource availability to make informed provisioning choices that
enhance both performance and cost-effectiveness of applications.

6.2. Model Protection Using MPC

The MPC, as a model security solution, provides the security of the Machine Learning
models, and applications, against the adversarial threats when applied on the data
either in training or inference phases. However, implementing MPC is not cheap
regarding performance and accuracy requirement, in this section we present and
evaluate the MPC in a multi machine scenario. The scenario was implemented including
three parties to simulate the future potential collaboration in the PER use case between
the parties VEN (data provider), BSC (model provider) and Cloud Provider for
computation of the inference of a machine learning model on a validation dataset in
a secure way that guarantee the security of the model and the data. As shown in Figure
6.2.1, the parties are renamed as Alice, Bob and Claude respectively. The assumptions
of this scenario are:

e The scenario have three different parties involved in the inference computation

e Each partner participates with a machine/cluster in the MPC protocol separated

from the others

e Alice has sensitive data and it is necessary to protect it

e Bob’s model needs protection
Three docker containers were used to simulate 3 parties’ machines, and this proof of
concept used the MNIST dataset with a 2-convolutional layered model.
MNIST dataset. The MNIST database (Modified National Institute of Standards and
Technology database) is a large database of handwritten digits that is publicly available
and commonly used for training various machine learning models. The dataset size is

32

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

21.00 MiB, The number of samples (28x28 pixels images) divided into a training
dataset of 60,000 images and testing dataset of 10,000 images.

Used hardware and software. The scenario was conducted using virtual machine
running Ubuntu 20.04.6 LTS (GNU/Linux 5.4.0-164-generic x86_64) with 4 core
Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz and 12 GB RAM

Venice Cloud

(in general)

&3

Task: Inference of already trained model on the
L MNIST Dataset ’

Figure 6.2.1: the simulation scenario and the mapping with the PER use case

The MPC library (CrypTen):

To implement the MPC protocol we used CrypTen, an open source library (GitHub link)
for Privacy Preserving Machine Learning built on PyTorch. Its goal is to make secure
computing techniques accessible to Machine Learning practitioners. It currently
implements Secure Multiparty Computation as its secure computing backend.

MVP overview:
The scenario overview as shown in Figure6.2.2 involves three separated machines
(Alice, Bob and Claude), Alice has the MNIST validation dataset with the correct labels
while Bob has the trained model on the MNIST training dataset. The scenario steps are
as follows:
1. All the three machines initialize the protocol and exchange the setup information
2. Alice encrypt the validation dataset and broadcast it to the others (send the
secret shares)
3. Alice encrypt the trained model and broadcast it to the others (send the secret
shares)
. Every party calculates the inference of their model and data shares locally
. Every party broadcast their result to the others and now everyone can
reassemble the encrypted result
Every party can decrypt the result to have the predicted labels
. Alice benchmark with the real label as the owner of the true labels

Ul b

No

33

D2.2 First Release of the EXTRACT Data Infrastructure and
Data Mining Framework

/

Machine 1

0000000270002 000]
CAANNL 220NN
242223220222332 2

3433831933383333
KNS ERER SR RS
5550855545556 5577
bbbblLbbbobisys
RT71LTURED
Fsisty

ls ~

5 o
o -~
-

Data Owner
Alice
=
=
w
)
]
o
5
S
"

MNIST Dataset

7 | Benchmark

Predicted
Labels

¢ 1 %

9 //\\

uondAioug

NS ==

Version 0:

ANEZ=

Communication
Protocol

1] s

et up

Ellnference

Everyone on

their share
locally

Encrypted Results

~

/

a

, V—

EXTR4CT

A distributed data-mining software platform for
exireme data across the compute continuum

Encryption

Machine 2

\
5

Model

Data Scientists
Bob

6/
| Decryption |[:> Pzt:;z:sed‘)
)

Decryption

_

Machine 3

Predicted ‘ ‘
Labels

\

Computation

Claude

Figure 6.2.2: the MVP overview

The first benchmark to test the library on one machine with different models’
structures and two multiprocess (Alice and Bob) on one machine, the goal was to test
the functionality of the library and to benchmark the time and accuracy of using it.

/

Process 1

000000000000
IRV ARY|
24122923228
3333832933

uondAioug I=/

3
MNIST Dataset
\Data Owner

B vy

TR

L[3]

Inference

—

~

fit

E Benchmark

K

Process 2

Model A

Model B

Data Scientists

0.
e

\

Bob

Figure 6.2.3: the MVP version 0

Alice has the MNIST validation dataset with the correct labels while Bob has the trained
model on the MNIST training dataset. The scenario steps are as follows:
1. Alice encrypt the validation dataset and broadcast it to Bob (send the secret

shares)

34

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR A CT

A distributed data-mining software platform for
extreme data across the compute continuum

2. Alice encrypt the trained model and broadcast it to Alice (send the secret shares)

3. Every party calculates the inference of their model and data shares locally

4. Alice benchmark with the real label as the owner of the true labels
Bob has three model structures models A,B and C shown in Figure 6.2.4, where model
A is a Multilayer Perceptron (MLP) structure with 3 linear layers, while models B and
C are 2-convolutional layered models with different settings.

Model A Model B Model C
: Conv + Relu+ |.J .| Conv + Relu +
Lmea: Layer Pool (5x5x16 || 5x5x20 —> Pool
i b
Relu Conv + Relu + iﬁ i :E: Conv + Relu +
: Pool T X0 Pool
Linear Layer l L
7 : :
r
Relu Llnear+ Layer Linea : Layer
B
_ Relu Relu
Linear Layer ; -
Linear Layer Linear Layer
784 ->128->128 -> 10 256 -> 100 -> 10 800 -> 500 -> 10

N T i

Linear Layers Settings

Figure 6.2.4: the different model structures A,B and C

The benchmark of this version is shown in Table 6.2.1, which shows the average time
(in seconds) of the three models inference on 40 of validation batches

Model A Model B Model C
Pytorch With Pytorch With Pytorch With
Crypten Crypten Crypten
Time 0.055 1.854 0.159 17.465 0.129 22.891
(33.7 (110 (177
times) times) times)

Table 6.2.1: the time benchmark of the model structures A,B and C compared with and without
using Crypten

Table 6.2.1 shows the computation/performance of using the MPC (implemented by
Crypten) meanwhile the accuracy was intact by using Crypten and for the next step,
Model B was selected only.

MPC full MVP on three different machines:

To simulate three separated machines, docker was used to build a container and the
compose file to set up the three different machines and the network that they
communicate through. Figure 6.2.5 shows the three logical layers, 1) the file system

35

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR[!I\CT

A distributed data-mining software platform for
exireme data across the compute continuum

with the validation dataset and labels, the trained model file and the script that the
three containers will run. 2) the building of the docker python container with all the
dependencies and the inference script file to be run. 3) run three different instances
Alice (with access to the validation dataset and labels files), Bob (with access to the
trained model file) and Claude. Also the compose file is configured to set up a local
network to allow the three machines to communicate.

Compose\ Alice Claude Bob
 nsconane - , 5
Alice, Bob and Claude a ‘ a8

- Setalocal network

- Alice has accesstoa
folder with two files,
the dataset and the
labels

- Bob has accesstoa -~

\ folder with the model / é Local Network
D

Docker Compose

Labels Model

2| Build o 7y

A docker python image
with all dependencies
and the inference script Docker Image
to be run

MNIST Dataset

Inference script

y File System Trained model
1 [True Labels &

Figure 6.2.5: Docker setup

The benchmark of this version is shown in Table 6.2.2, which shows the average time
(in seconds) of the models inference on 40 batch of 256 photo each (with average
accuracy 0.9872)

Time Alice Bob Claude
25% CPU 330.19 330.16 330.18
100% CPU 4573 4572 4572

Table 6.2.2: the time benchmark of the model B using 3 separated machines using a quarter of a
CPU core or a whole CPU core

36

D2.2 First Release of the EXTRACT Data Infrastructure and
Data Mining Framework

7. Conclusion

This deliverable is part of EXTRACT project’s WP2. As shown, it embodies the result of
significant work done for defining data infrastructure and data mining layers that meet
the ambitious requirements of EXTRACT, and further includes initial evaluations and
a demonstrator. Having said that, significant work is still ahead for completing the
implementation according to the laid-out design, and evaluating full end-to-end

scenarios to prove the goal KPIs.

8. Acronyms and Abbreviations

37

Al - Artificial Intelligence

API - Application Programming Interface
AWS - Amazon Web Services

CA - Consortium Agreement

CD - Continuous Development

CI - Continuous Integration

COE - Container Orchestration Engine

CPU - Central Processing Unit

D - Deliverable

DevOps - Development and Operations
DevSecOps - Development, Security and Operations
DoA - Description of Action (Annex 1 of the Grant Agreement)
GA - General Assembly / Grant Agreement
GPU - Graphics Processing Unit

HPC - High Performance Computing

IDE - Integrated Development Environment
IPR - Intellectual Property Right

ISO - International Organization for Standardization
KPI - Key Performance Indicator

K3s - Lightweight Kubernetes

K8s - Kubernetes

LAN - Local Area Network

M - Month

MS - Milestones

NAT - Network Address Translation

OS - Operation System

PaaS - Platform as a Service

PM - Person month / Project manager
QUIC - Quick UDP Internet Connections
SaaS - Software as a Service

SHA - Secure Hash Algorithm

T - Task

TLS - Transport Layer Security

UDP - User Datagram Protocol

VCS - Version Control System

VM - Virtual Machine

VPN - Virtual Private Network

WP - Work Package

EXTRACT

A distributed data-mining software platform for
extreme data across the compute continuu

D2.2 First Release of the EXTRACT Data Infrastructure and

Data Mining Framework EXTR[!I\CT

A distributed data-mining software platform for
exireme data across the compute continuum

9. References

38

[1]
[2]
[3]
[4]

[5]
[6]
[7]
[8]
[9]
[10]
[11]

https://openmp.org

https://developer.nvidia.com/cuda-zone

http://compss.bsc.es

S. Chang, et.al., "Feasibility of Running Singularity Containers with Hybrid
MPI on NASA High-End Computing Resources” CANOPIE-HPC, 2021
https://aws.amazon.com/s3
https://www.ibm.com/cloud/object-storage
https://www.redhat.com/es/technologies/storage/ceph
https://kubernetes.io/

https://skypilot.readthedocs.io/en/latest/

https://kubeedge.io/en

https://nuvla.io

https://openmp.org
https://www.ibm.com/cloud/object-storage
https://www.redhat.com/es/technologies/storage/ceph
https://kubernetes.io/
https://skypilot.readthedocs.io/en/latest/
https://kubeedge.io/en/
https://nuvla.io

