D3.2

EXTRACT

A distributed data-mining software platform for
extreme data across the compute continuum

Data-driven orchestration and
monitoring (first release)

Version 1.0

Documentation Information

Contract
Number

101093110

Project Website

www.extract-project.eu

Contratual M15, 31st March 2024

Deadline

Dissemination Public

Level

Nature Report

Author IKERLAN (IKL)

Contributors BSC, IBM, IKL, SIX

Reviewer LRI

Keywords Data, orchestration, monitoring, first-release

http://www.extract

D3.2. Data-driven orchestration and monitoring (first release) EXTRI!I\CT
Ve rs i 0 n 1 " O A distributed data-mining soff;ave platform for

extreme data across the compute continuum

Change Log

V0.1 Initial draft of the table of contents
V0.2 Distributed Monitoring Architecture
V0.3 Code addition for justification
V0.4 Review (LRI)

V0.5 Apply comments from review (IKL)
V1.0 Ready to submit

- The EXTRACT Project has received funding from the European Union’s
Horizon Europe programme under grant agreement number 101093110.

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad date-ining softeac iatfor o

extreme data across the compute continuum

Table of Contents

3R I o o Yo ¥ ot of [0 I PP 3
I) o 8T 3
1.2. Relationship with other WPS......vii i e e 3

2. Distributed Monitoring Architecture..... ..o e 4
2% W oY o 1] u(e] o T I @00 0 4] T =T | =S 4

A R R B 1 | =) o] = [[5
2.1.2. Data ColleCtors. vt e 6
22 NG TR B - | = R I =1 1] oo o 8
2.1.4. Data Processing ProCEAUIESviiiiiiiiiii i s e e s aeereeeaes 8
2.1.5. VisUAliZation. .uu i 10
2 2 1= o o ot PN 12
0 A R G = 13
A =T o] 14
B2 G T \ L= 1Yo] {1 Lo S 16
A S o = [1= 17
A T Y =1 =] o 18
2.3. Validation of requUIiremMeEntsScooviieiiiii e e 18

3. Data-driven Workflow Deployment and Schedulingcccooviiiiiiiiiiiin i 20
3.1. Orchestrator arChiteCtUre.....cvv i e 20
3.2. Technology desCriptioNoiuiei e e rne e e eanes 22

3.2. 1. KUDBINEEES ittt e et 22
3.2, 2. COMP S S ittt e e 23
3.2, 3, NUVIA s 24
3.3. Interaction with Monitoring Platform........ccooii i 24

L =g o) =T 01 25
4.1. Prometheus ServiCe DiSCOVEIY ..uuiiiiiii ittt ie et sane e anaesaneaaneas 25
4.2. MetriC Candidates .. .oiiuiiii i 26
4.3, EXporter Candidates. . ..ooue i s 26
S [T T e 1 T Y 27
4.5. Scheduling algorithms. ... s 27

S T @0 1ol [T =] Lo o 1 PP 28

6. Acronyms and Abbreviationscoviiiiiiiii e 29

W 2 (=T =] L= P 29

D3.2. Data-driven orchestration and monitoring (first release) EXTR A CT
Ve rs i O n 1 L] O A distributed data-mining software platform for

extreme data across the compute continuum

1. Introduction

This document provides a comprehensive account of advancements made thus far
within Extract project’s Work Package 3. To be precise, it mainly encompasses the
work undertaken in the context of two tasks: T3.2 Data-driven Workflow Deployment
and Scheduling, devoted to the development of the EXTRACT orchestrator, and T3.3
Distributed Monitoring Architecture, which aims to develop a monitoring infrastructure
that will collect information from the execution of data mining workflows across the
compute continuum. D3.2 marks a significant milestone in the ongoing Extract
research project, providing a comprehensive account of advancements made thus far.

In order to meet Objective 2 (which addresses the development of novel data-driven
orchestration mechanisms to deploy and run data-mining workflows) together with all
the corresponding technical objectives, the primary focus of this deliverable lies in
detailing a monitoring system designed to capture metrics related to various features
of the Extract platform. These metrics serve as crucial inputs for an orchestrator,
enabling it to make optimized decisions. The orchestrator itself will be thoroughly
described, outlining its components and functionalities. Furthermore, this document
delves into the intricate integration between the orchestrator and the monitoring
system, offering a holistic understanding of the data-driven orchestration and
monitoring framework developed within the project.

1.1. Structure

This document is organized in 4 sections:

e Section 1 introduces the document and gives a main view of the structure of the
document.

e Section 2 details the distributed monitoring architecture, enumerating its
components, discussing the metrics employed, examining the prerequisites for
validation, and outlining the subsequent actions.

e Section 3 covers the implementation and arrangement of the data-driven
workflow, outlining the architecture of the orchestrator and explaining the
technology utilized.

e Section 4 gives a summary of the conclusions drawn from this document.

The document concludes by listing the acronyms, abbreviations, and bibliography
references.

1.2. Relationship with other WPs

D2.2 T2.3 Data-Mining Framework (WIP)
D3.1 T3.1 Data-driven orchestration requirement specification
D4.1 T4.1 Compute continuum requirement specification and

EXTRACT platform integration plan

D4.2 T4.2 Programming and Execution Models Interoperability
Table 1. Relationship with other WPs

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad date-ining softeac iatfor o

extreme data across the compute continuum

2. Distributed Monitoring Architecture

The distributed monitoring architecture was initially proposed in deliverable D3.1. The
current section provides further details on the current state of the monitoring
architecture. The different technologies used to implement each proposed components
are defined and the different metrics that are being monitored are listed. Additionally,
the current fulfillment of the requirements presented in deliverable D3.1 are specified
which allows identifying the future steps towards the development of the monitoring
architecture.

2.1. Monitoring Components

The monitoring architecture proposed in deliverable D3.1 has been updated as seen
in Figure 1. The components necessary to implement the monitoring system can be
identified and will be explained in more detail in the following subsections.

Indicate that this monitoring system will be deployed in the Kubernetes architecture
of the project using Ansible. This software tool provides simple but powerful
automation including provisioning, configuration management, application deployment
and orchestration. In the following subsections also include playbooks and roles which
are the files where the Ansible tool defines the tasks to be executed on the nodes of
architecture.

Orchestration | o API \‘_ Data storage - Visualization

system |
Data
transport
* v v v
Compute
continuum Data Data Data Data Data
collectors collectors processing collectors collectors
Node Node Node Node

Figure 1 Monitoring Architecture

Prometheus [1] has been used as the cornerstone technology to implement this
monitoring system. Prometheus is an open-source monitoring and alerting toolkit
designed for reliability and scalability in modern and dynamic infrastructures,
particularly those using container orchestration systems like Kubernetes. The
architecture of Prometheus and some of its ecosystem's components are illustrated in
the next figure.

D3.2. Data-driven orchestration and monitoring (first release) EXTR A CT

Ve rs i 0 n 1 " 0 A distributed data-mining software platform for
extreme data across the compute continuum
Y —— | . .
(M Service discovery Prometheus ‘
U Short-lived alerting .+ pagerduty
ob o
N) kubernetes file sd =
T — —_—
push metrics Alertmanager : -{ Email |
at exit L)
H discover .
13 targets + notify
H : etc
Pushgateway Prometheus server :
push
,) alerts
,,,,,,,,,, pull L} Retrieval |- TsDB [HTTP
metrics server
' ; PromQL

9 Prometheus
web Ul

” Jobs/ Node @ Grafana) Dgta A
exporters | | 2~~~ eea—— | - visualization
and export
Prometheus 5
=

Figure 2 Prometheus Architecture

The following code snippet is a Ansible playbook that deploys the whole monitoring
architecture on the Kubernetes infrastructure. The first role installs helm which is a
Kubernetes deployment package manager that is required for the rest of the roles.

- name: Install Prometheus
hosts: master
roles:

install-helm

install-prometheus

install-metrics-server

install-grafana

Prometheus capabilities, combined with other technologies, are leveraged to
implement the different components in the monitoring architecture defined in
deliverable D3.1. In the following sections, each of these components is detailed,
including the corresponding role.

2.1.1. Data Storage

The Prometheus ecosystem includes multiple components but the most important is
the Prometheus Server. This service includes a time series database where captured
metrics are stored.

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad date-ining softeac iatfor o

extreme data across the compute continuum

To consult or retrieve information from this database, PromQL (Prometheus Query
Language) is used. This query language is designhed specifically for querying and
manipulating time series data collected by Prometheus. Some of the most important
features or key aspects that can be highlighted is that PromQL supports instants
queries and range queries where aggregation functions and arithmetic and binary
operations like addition, subtraction, multiplication, division, and comparisons can be
apply. Furthermore, it includes functions for calculating the rate of change and the
total increase and functions to work with histogram and summary metrics, which are
used to measure the distribution of values.

The following code snippet shows the role for installing Prometheus.

- name: Add Prometheus Helm chart repository
kubernetes.core.helm_repository:
name: prometheus-community

repo_url: https://prometheus-community.github.io/helm-charts

- name: Install Prometheus Helm chart
kubernetes.core.helm:
release_name: my-prometheus
chart_ref: prometheus-community/prometheus
chart_version: 22.7.0
state: present # present / absent: use this to remove installation
release_namespace: monitoring
create_namespace: true
values:
server:
service:
type: NodePort
nodePort: 31000

2.1.2. Data Collectors

The data collectors are basically software components called exporters that collect and
expose metrics from system, services, and applications in a format that Prometheus
can scrape and store. Therefore, they act as bridges between Prometheus and system
monitor allowing to gather information about health, performance, and other relevant
metrics.

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad date-ining softeac iatfor o

extreme data across the compute continuum

In this case, the exporters that are used for collecting and exposing the architecture
metrics are kube-state-metrics [2] and metrics-server [3]. The first one is used for
exposing the state of various Kubernetes objects as metrics. This object includes
nodes, pods, services and more and takes information from Kubernetes API server
about the current state of these objects and exposes them as Prometheus style
metrics. The last one collects resource utilization metrics from the various components
of Kubernetes clusters using Kubelets and exposes them as Prometheus style metrics.

In addition, the use of OpenTelemetry [4] for exposing custom metrics is also
considered. OpenTelemetry, also known as OTel is an open-source observability
framework for instrumenting, generating, collecting, and exporting telemetry data
such as traces, metrics, and logs. In this case this software can be implemented in the
different services for exposing custom metrics to Prometheus server. For example, it
is possible to export the number of times certain code has been executed or has failed.

] A

Application -
‘Q Pull metrics 9

Exporter Telemetry

Prometheus

b _4

Figure 3 OpenTelemetry as Prometheus Exporter

The following code snippet shows the role for installing metrics-server exporter.

- name: Add Metrics server Helm chart repository
kubernetes.core.helm_repository:
name: metrics-server-repo
repo_url: https://kubernetes-sigs.github.io/metrics-server/

- name: Install Metrics Server Helm chart
kubernetes.core.helm:
release_name: metrics-server
chart_ref: metrics-server-repo/metrics-server
chart_version: 3.11.0
state: present # present / absent: use this to remove installation
release_namespace: kube-system

values:

args:

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad date-ining softeac iatfor o

extreme data across the compute continuum

- --kubelet-insecure-tls

2.1.3. Data Transport

There are two fundamentally different approaches by which the Prometheus server
collects metrics. The “push approach” when the application actively pushes its metrics
to designated Prometheus Pushgateway. Then the Pushgateway becomes responsible
for exposing metrics over HTTP. And the “pull approach” when Prometheus Server
periodically pulls metrics from the exposed HTTP endpoint. Typically, metrics are
exposed at a designated endpoint (e.g., ‘/metrics’) and formatted using a simple text-
based format that includes key-value pairs, and each metric is associated with a
timestamp.

2.1.4. Data Processing Procedures

As already indicated in a previous section there is the possibility of using
OpenTelemetry to export custom metrics. The main advantage of its use is the
opportunity to implement data processing, analytics, aggregation, and clean before
exporting the metrics, although they must maintain the OpenTelemetry protocol data
model (OTLP).

The OpenTelemetry metrics data model is defined by a protocol specification and
semantic conventions, specifically designed for delivering pre-aggregated metric
timeseries data. This model serves a dual purpose: enabling the seamless import of
data for existing systems and the effortless export of data into established systems.

2.1.4.1. Open Telemetry example

The following code snippet shows an example of a simple application what uses Open
Telemetry to expose a counter that is updated every second with a random value
between -100 and 100.

import sys

import time

import random

from opentelemetry import trace, metrics

from opentelemetry.sdk.resources import Resource, SERVICE_NAME

from opentelemetry.sdk.metrics import MeterProvider

from opentelemetry.exporter.prometheus import PrometheusMetricReader

from prometheus_client import start_http_server

Service name required for the Prometheus

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad date-ining softeac iatfor o

extreme data across the compute continuum

resource = Resource.create(attributes={SERVICE_NAME:
"example_application"})

Start the Prometheus client
start_http_server(port=8000, addr="0.0.0.0")

Initialize PrometheusMetricReader which pulls metrics from the SDK
on-demand to respond to scrape requests

reader = PrometheusMetricReader()

provider = MeterProvider(resource=resource, metric_readers=[reader])

metrics.set_meter_provider(provider)

Acquire a tracer

tracer = trace.get_tracer("example_aplication.tracer")

Acquire a meter.

meter = metrics.get_meter("example_aplication.meter")

Create a random counter
random_meter = meter.create_up_down_counter(
name="example_aplication.random",

description="Random number of example application",

Start the application
sys.stdout.flush()
while True:
Create a new span
with tracer.start_as_current_span("do_random") as random_span:
time.sleep(1)
random_number = random.randint(-100, 100)
Set the random number as an attribute
random_span.set_attribute("random.value", random_number)
Add the random number to the random counter

random_meter.add(random_number)

D3.2. Data-driven orchestration and monitoring (first release)
Version 1.0

EXTRACT

A distributed data-mining software platform for
extreme data across the compute continuum

sys.stdout.flush()

2.1.5. Visualization

Prometheus itself does not provide native visualization capabilities so Grafana [5] has
been used as monitoring platform to visualize and analyze metrics. Using this
visualization tool, it is possible to connect Prometheus as a data source and create
comprehensive dashboards. There is also the possibility of importing different
dashboards made by the community that already have the queries and charts defined.
In this case several dashboards have been imported. On the one hand, dashboards
have been imported to visualize the different metrics of the distinct entities that make
up a Kubernetes cluster. And on the other hand, other dashboards that allow to view

metrics exposed by custom nodes like the Jetson Nano.
The following code snippet shows the role for installing Grafana.

- name: Add Prometheus Helm chart repository
kubernetes.core.helm_repository:
name: grafana-community
repo_url: https://grafana.github.io/helm-charts

- name: Install Grafana Helm chart
kubernetes.core.helm:
release_name: my-grafana
chart_ref: grafana-community/grafana
chart_version: 7.0.19
state: present # present / absent: use this to remove installation
release_namespace: monitoring
create_namespace: true
values:
adminPassword: extract2024
datasources:
datasources.yaml:
apiVersion: 1
datasources:
- name: Prometheus
type: prometheus
url: http://my-prometheus-server

access: proxy

10

D3.2. Data-driven orchestration and monitoring (first release)
Version 1.0

EXTRACT

A distributed data-mining software platform for
extreme data across the compute continuum

isDefault: true
editable: true
dashboardProviders:
dashboardproviders.yaml:
apiVersion: 1
providers:

- name: 'default'

orgld: 1
folder: "
type: file

disableDeletion: false
updatelntervalSeconds: 10
options:
path: /var/lib/grafana/dashboards
folderFromFilesStructure: true
dashboards:
default:
kubernetes-monitoring:
gnetld: 315
revision: 3
datasource: Prometheus

k8s-system-api-server:

kubernetes/master/dashboards/k8s-system-api-server.json

token:

k8s-system-coredns:

kubernetes/master/dashboards/k8s-system-coredns.json

token:

k8s-views-global:

kubernetes/master/dashboards/k8s-views-global.json

token:

k8s-views-namespaces:

kubernetes/master/dashboards/k8s-views-namespaces.json

url: https://raw.githubusercontent.com/dotdc/grafana-dashboards-

url: https://raw.githubusercontent.com/dotdc/grafana-dashboards-

url: https://raw.githubusercontent.com/dotdc/grafana-dashboards-

url: https://raw.githubusercontent.com/dotdc/grafana-dashboards-

11

D3.2. Data-driven orchestration and monitoring (first release)
Version 1.0

EXTRACT

A distributed data-mining software platform for

extreme data across the compute continuum

token:
k8s-views-nodes:

url: https://raw.githubusercontent.com/dotdc/grafana-dashboards-
kubernetes/master/dashboards/k8s-views-nodes.json
token: "
k8s-views-pods:

url: https://raw.githubusercontent.com/dotdc/grafana-dashboards-
kubernetes/master/dashboards/k8s-views-pods.json
token: "
service:
type: NodePort

nodePort: 31001

Global RAM Usage
Real

(]
REGESS

|

Limits

U

RAM Usage

Limits

Requests Total
Real Requests Total
1 " 3 5 1 2 3.49¢i8 640MiB 340MmiB 23.3ciB

Figure 4 Grafana Kubernetes dashboard

12

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad date-ining softeac iatfor o

extreme data across the compute continuum

2.2. Metrics

This following chapter contains the metrics already implemented and available in the
Prometheus database. Additionally, a set of potential metric candidates are presented
in the chapter 2.5.1 to share them with the partners and to decide which metric
candidates could be interesting to be implemented.

2.2.1. CPU

The following CPU related metrics have already been implemented. Monitoring CPU
usage of nodes helps optimize resource allocation and identify performance
bottlenecks.

Cluster CPU Usage: The current usage of the CPUs of the whole cluster. The
cluster CPU usage metric is a percent value (0% to 100%). The metric is
calculated by dividing the sum of the current used CPU resources by the sum of
the current free CPU resources in the cluster. The metric englobes all the nodes
running in the cluster and is a metric to get a quick overview on the current CPU
usage on the whole cluster. Once identified a possible bottleneck, a more
detailed analysis can be done using the more detailed metrics.

Query:

sum (rate (container_cpu_usage_seconds_total {id="/",
kubernetes_io_hosthame = ~"~ *$"}[1m])) / sum (machine_cpu_cores
{ kubernetes_io_hostname =~"A_*$"}) * 100

Containers CPU Usage: The current CPU usage of each of the Containers. The
Container’'s CPU usage metric is a percentage value whose maximum value
depends on the number of cores assigned to the Container (0% to x00% being
x the number of cores). The metric is calculated by adding up the current CPU
usage value of the Container for each of the cores assigned to the Container.

Query:

sum (rate (container_cpu_usage_seconds_total
{image!="",name!~""k8s_.*", kubernetes_io_hostname =~"~.*$"}[1m]))
by (kubernetes_io_hosthame, name, image)

Processes CPU Usage: The current usage of the CPUs by each of the
processes. The process CPU usage metric is a percentage value whose
maximum value depends on the number of cores assigned to the process (0%
to x00% being x the number of cores). The metric is calculated by adding up
the current CPU usage value of the process for each of the cores assigned to the
process.

Query:

13

sum (rate (container_cpu_usage_seconds_total {id!="/",
kubernetes_io_hostname = ~"~ . *¢" }[1m])) by (id)

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad date-ining softeac iatfor o

extreme data across the compute continuum

PODs CPU Usage: The current CPU usage of each of the Kubernetes PODs. The
PODs CPU usage metric is a percentage value whose maximum value depends
on the number of cores assigned to the Kubernetes POD (0% to x00% being x
the number of cores). The metric is calculated by adding up the current CPU
usage value of the POD for each of the cores assigned to the POD.

Query:

sum (rate (container_cpu_usage_seconds_total {image!="",
name=~""k8s_.*", kubernetes_io_hostname =~"A*$"[1m])) by
(pod_name)

System Services CPU Usage:The current CPU usage of the system services.
The System Services CPU usage metric is a percentage value whose maximum
value depends on the number of cores used by each of the system services (0%
to x00% being x the number of cores). The metric is calculated by adding up
the current CPU usage value of each of the System Services.

Query:

sum (rate (container_cpu_usage_seconds_total
{systemd_service_name!="", kubernetes_io_hostname=~""_*$"}[1m])) by
(systemd_service_name)

Namespace CPU Usage: The current CPU usage of a Kubernetes namespace.
The namespace CPU usage metric is a percentage value whose maximum value
depends on the number of cores used by each of the entities executed in this
namespace (0% to x00% being x the number of cores). The metric is calculated
by adding up the current CPU usage value of each of the entities assigned to the
namespace. This metric can used to obtain the CPU usage of an application
which is executed on the cluster. For this all entities composing the application
needs to be assighed to the same namespace.

2.2.2. Memory

The following memory related metrics have already been implemented. Tracking
memory usage and availability of nodes aids in efficient resource allocation and
capacity planning.

14

Cluster Memory Usage: The current usage of memory of the whole cluster.
The cluster memory usage metric is a percentage value (0% to 100%). The
metric is calculated by dividing the sum of the current used memory by the sum
of the current free memory in the cluster. The metric englobes all the nodes
running in the cluster and is a metric to get a quick overview on the current
memory usage on the whole cluster. Once identified a possible bottleneck, a
more detailed analysis can be done using the more detailed metrics.

D3.2. Data-driven orchestration and monitoring (first release) EXTR A CT

Version 1.0 At daa g sfewrs o o
Query:
sum (container_memory_working_set_bytes
{id="/",kubernetes_io_hostname=~"" *$"}) / sum

(machine_memory_bytes{kubernetes_io_hostname=~""_*¢"}) * 100

¢ Containers Memory Usage: The current usage of memory in each of the
containers. The container memory usage metric measures the number of bytes
of main memory used by each container. The metric englobes all the containers
existing in the cluster and provides a usage value for each of them.

Query:

sum (container_memory_working_set_bytes {image!="",name!~""k8s_.*",
kubernetes_io_hostname =~"~.*$"}) by (kubernetes_io_hostname, name,
image)

e Processes Memory Usage: The current usage of memory by each of the
processes. The processes memory usage metric measures the number of bytes
of main memory used by each process. The metric englobes all the processes
running on the cluster and provides a usage value for each of them.

Query:

sum (container_memory_working_set_bytes
{id!'="/",kubernetes_io_hostname=~"".*$"%}) by (id)

¢ Pods Memory Usage: The current usage of memory by each of the Kubernetes
PODs. The PODs memory usage metric measures the number of bytes of main
memory used by each Kubernetes POD. The metric englobes all the PODs
running on the cluster and provides a usage value for each of them.

Query:

sum (container_memory_working_set_bytes {image!=
kubernetes_io_hostname=~"".*$"}) by (pod_name)

,name=~"~"k8s_.*",

¢ System Services Memory Usage: The current memory usage of the system
services on the nodes. The system services memory usage metric measures the
number of bytes of main memory used by each of the system services. The
metric englobes all the system services running on the cluster and provides a
usage value for each of them.

Query:

sum (rate (container_cpu_usage_seconds_total
{systemd_service_name!="", kubernetes_io_hostname =~"~.*¢"}[1m])) by
(systemd_service_name)

15

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad date-ining softeac iatfor o

extreme data across the compute continuum

 Namespace Memory Usage: The current memory usage of a Kubernetes
namespace. The namespace memory usage metric measures the number of
bytes of main memory used by each of the entities executed in a namespace.
The metric is calculated by adding up the current memory usage of each of the
entities assigned to the namespace. This metric can used to obtain the memory
usage of an application which is executed on the cluster. For this all entities
composing the application needs to be assigned to the same namespace.

Query:

sum (container_memory_working_set_bytes {container!="",
kubernetes_io_hosthame=~"".*$"}) by (namespace)

2.2.3. Networking

The following network related metrics have already been implemented. Monitoring
network traffic and throughput between nodes helps optimize data transfer and
identify network-related issues.

¢ Cluster Network I/0 Pressure: The current amount of incoming and outgoing
network traffic. The cluster network I/O pressure metric measures the total
number of bytes per second transferred through the network by the applications
executed on the cluster.

Query:

sum (rate (container_network_receive_bytes_total
{kubernetes_io_hostname=~""_*$" }[1m]))

sum (rate (container_network_transmit_bytes_total
{kubernetes_io_hostname=~""_*$"} [1m]))

¢ Containers Network I/0 Pressure: The current network usage of each of
the containers. The containers network I/O pressure metric measures the
number of bytes per second transferred through the network by each of the
containers executed on the cluster.

Query:

sum (rate
(container_network_receive_bytes_total{image!="",name!~""k8s_.*",
kubernetes_io_hostname=~""~.*¢"}[1m])) by (kubernetes_io_hostname,

name, image)

- sum (rate
(container_network_transmit_bytes_total{image!="",name!~""k8s_.*",
kubernetes_io_hostname=~""~.*¢"}[1m])) by (kubernetes_io_hostname,
name, image)

16

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad date-ining softeac iatfor o

extreme data across the compute continuum

e Processes Network I/0 Pressure: The current network usage of each of the
processes. The processes network I/O pressure metric measures the number of
bytes per second transferred through the network by each of the processes
executed on the cluster.

Query:

sum (rate (container_network_receive_bytes_total{id!="/",
kubernetes_io_hostname =~""_*$"}[1m])) by (id)

- sum (rate (container_network_transmit_bytes_total{id!="/",
kubernetes_io_hostname =~""_*$"}[1m])) by (id)

¢ Pods Network I/0 Pressure:The current network usage of each of the PODs.
The PODs network I/O pressure metric measures the number of bytes per
second transferred through the network by each of the Kubernetes PODs
executed on the cluster.

Query:

sum (rate
(container_network_receive_bytes_total{image!="",name=~""k8s_.*",
kubernetes_io_hostname=~""~.*$"}[1m])) by (pod_name)

sum (rate
(container_network_transmit_bytes_total{image!="",name=~""k8s_.*",
kubernetes_io_hostname=~""~.*$"}[1m])) by (pod_name)

¢ Namespace Networks I/O Pressure: The current network usage of a
Kubernetes namespace. The namespace network usage metric measures the
number of incoming and outgoing bytes per second transferred over the
network by each of the entities executed in a namespace. The metric is
calculated by adding up the current bytes transferred by each of the entities
assigned to the namespace. This metric can used to obtain the current network
usage of an application which is executed on the cluster. For this all entities
composing the application needs to be assighed to the same namespace.

Query:

sum (rate
(container_network_receive_bytes_total{container!="",name=~""k8s_.*",
kubernetes_io_hostname=~"".*¢"}[1m])) by (namespace)

sum (rate
(container_network_transmit_bytes_total{container!="",name=~""k8s_.*",
kubernetes_io_hostname=~"".*¢"}[1m])) by (namespace)

17

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad date-ining softeac iatfor o

extreme data across the compute continuum

2.2.4. Storage

The following storage related metrics have already been implemented. Keeping track
of storage usage on nodes ensures efficient allocation and helps identify capacity
constraints.The following storage related metrics have already been implemented.
Keeping track of storage usage on nodes ensures efficient allocation and helps identify
capacity constraints.

¢ Node disk throughput: The current throughput of the filesystem on node
level. The node disk throughput metric measures the number of bytes per
second read or written to the disk by each of the nodes executed of the cluster.

Query:

sum (rate (node_disk_io_now{}[$__rate_interval])) by (node)

¢ Namespace disk throughput: The accumulated throughput on namespace
level. The namespace disk throughput metric measures the number of bytes
per read or written to the disk by each of the entities executed in a namespace.
The metric is calculated by adding up the current bytes read or written by each
of the entities assigned to the namespace. This metric can used to obtain the
current disk throughput of an application which is executed on the cluster. For
this all entities composing the application needs to be assighed to the same
namespace.

Query:

sum (rate (node_disk_io_now{}[$__rate_interval])) by (namespace)

2.2.5. System

The following system related metrics have already been implemented. The system
needs to be dynamic to adapt its deployment to these infrastructure availability
changes; therefore, it is important to monitor the available compute nodes.

e Available compute nodes: The current humber of compute nodes available
on the cluster. This metric changes for example, when there are infrastructure
availability changes on the cluster or new infrastructure is added.

Query:

count (count by (node) (kube_node_info{cluster=""}))

2.3. Validation of requirements

This chapter will review the requirements defined in deliverable D3.1, section 4.
“Monitoring requirements” to validate that they have been considered during the
development of the architecture of the monitoring system for the EXTRACT platform.

18

D3.2. Data-driven orchestration and monitoring (first release)
Version 1.0

EXTRACT

A distributed data-mining software platform for
exireme data across the compute confinuum

According to deliverable D3.1, the main objective of the monitoring system is to
collect, process, store, and report information about the operation, the status, and the
resources of the compute continuum. This information will be used by the orchestrator
and other EXTRACT applications to optimize performance, availability, scalability,
security, and management of the compute continuum and associated applications.

The following table shows the list of the previously defined requirements and the tools
that have been used to fulfill them, as well as an update of the implementation status.
More detailed information on the requirement and why it is necessary for the system
can be found in section 4 of deliverable D3.1.

Near real-time Prometheus
monitoring

Implemented

Flexibility and Prometheus + Open Telemetry
extensibility

Implemented

Integration API Not Implemented

Historical Data Prometheus (time series database) Implemented

Scalability and Related to architecture Implemented

efficiency

Reliability Related to architecture Implemented
Security and Prometheus Implemented
compliance

Table 2. Monitoring requirements and tools

On the other hand, the requirements of the metrics to be met by the monitoring agents
were also defined. The following table shows the list of the metric requirements, as
well as an update of the implementation status. More detailed information on the
requirement and why it is necessary for the system can be found in section 4.2. of
deliverable D3.1.

Metrics related to the nodes and the infrastructure of the compute continuum:

Available Implemented
nodes
CPU usage e s me e Implemented

metrics-server

Memory usage

Network

19

Implemented

Implemented

D3.2. Data-driven orchestration and monitoring (first release)

Version 1.0

Throughput

Storage
Utilization

Node Health

Workload

Distribution TBD

Resource
Efficiency

Metrics related to the applications and systems deployed:

Application
Availability
Application TBD
Response

Time

Container
Metrics

Network
Throughput

Storage
Utilization

Workload-
specific
Metrics

Service Health
Node Health

Workload
Distribution

TBD

Resource
Efficiency

20

kube-state-metrics

metrics-server

Table 3. Metric requirements and tools

EXTRACT

A distributed data-mining software platform for
mpute continuum

extreme data across the cor

Partially Implemented.
Throughput related
metrics have been
implemented. Storage
usage metrics are still
pending to be
implemented.

Not Implemented

Not Implemented

Not Implemented

Not Implemented

Not Implemented

Implemented

Implemented

Partially Implemented.
Throughput related
metrics have been
implemented. Storage
usage metrics are still
pending to be
implemented.

Not Implemented

Not Implemented
Not Implemented

Not Implemented

Not Implemented

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad date-ining softeac iatfor o

extreme data across the compute continuum

3. Data-driven Workflow Deployment and
Scheduling

3.1. Orchestrator architecture

As stated in D3.1, the EXTRACT platform will be composed of two orchestration layers:
the application layer and the infrastructure layer. The application layer is in charge of
scheduling the data-driven workflow and the infrastructure layer of its deployment.

In the EXTRACT context, the application layer is implemented with COMPSs, which is
in charge of creating the Task Dependency Graph and executing the tasks of the
workflows in its workers. On the other hand, the infrastructure layer is implemented
with Kubernetes and is in charge of deploying COMPSs as Pods and ensuring the full
workflow execution (e.g. Pods restarting) and allowing for Pods communication among
them.

It is worth mentioning that both, COMPSs and Kubernetes, have their own scheduler
and orchestrator, and it may be easy to confuse the terms. In order to have a clearer
vocabulary, we propose the next definitions:

Application scheduler: The COMPSs scheduler that decides in which node a
task of the TDG will be executed, taking into account network and data-
locality. The default COMPSs scheduler is
es.bsc.compss.scheduler.orderstrict.fifo.FifoTS, that prioritizes task generation
order in FIFO.

Application orchestrator: The COMPSs orchestrator that is in charge of
offloading a task to the decided COMPSs worker.

Infrastructure scheduler: The Kubernetes scheduler that will determine
where the COMPSs master and workers are deployed. The default scheduler is
kube-sched and affinity and anti-affinity rules are used such that every worker
is deployed in a different node.

21

D3.2. Data-driven orchestration and monitoring (first release) EXTR[!I\CT
Ve rs i 0 n 1 " 0 A distributed data-mining soff:vave platform for

extreme data across the compute continuum

COMPSs Scheduler @ «

] 4
Multi-Cluster & LIQ#:

AR e S

(
! Q Data Catalog j
s wa T oo R D
{ Cloud
—_—

f I
\
\

Oy i
PR os
| LITHOPS ll Cache

|
. |

Figure 5 Orchestration Architecture Overview

¢ Infrastructure orchestrator: The Kubernetes orchestrator is a broader term
that encompasses the entire Kubernetes platform, which is responsible for
managing and coordinating the containerized workloads across the continuum.

* Monitoring: The monitoring layer described in detail in the previous sections,
plays a pivotal role in providing real-time insights into the system's health and
performance. It collects metrics related to resource utilization, application
performance, and system state, which are then fed back to the scheduler. This
feedback loop enables to adjust the scheduling strategies dynamically,
prioritizing tasks based on the current operational context and resource
availability.

3.2. Technology description
3.2.1. Kubernetes

Kubernetes is a commonly used open-source platform designed for automating the
deployment, scaling, and management of containerized applications. It groups
containers that make up an application into logical units for easy management and
discovery. As a highly flexible container orchestration tool, it enables the efficient
handling of workloads by using the concept of pods, which are the smallest deployable
units that can be created and managed in Kubernetes.

22

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad dte-mining sfteare et o

extreme data across the compute continuum

The integration of Kubernetes clusters with a global, multi-cluster
orchestrator/scheduler for EXTRACT such as COMPSs poses a conflict for the
scheduling of tasks. Naturally, a task requires resources such as
CPU/GPU/memory/storage/network to be available for it out of a Kubernetes cluster
when the task needs to run. Thus, the task needs to to be scheduled for execution in
the cluster. On one hand, COMPSs needs to be the scheduler of the task because it
orchestrates the overall workflow that the task belongs to and may have sensitive
timing constraints, as discussed in D3.1 []. On the other hand, a Kubernetes cluster is
equipped with a native scheduler [] of its own, which facilitates usage of the cluster’s
entire resource pool, as well as enabling additional capabilities such as high-availability
etc.

As both schedulers, COMPSs and Kubernetes scheduler, contend for the same pool of
resources, there need to be a consistent strategy that allows both of them to work
together, while avoiding conflicting decisions. In addition, EXTRACT requirements of
real-time execution need to be observed.

There are two common strategies that have been considered for resolving the above
issue. One is delegation, in which COMPSs serves as a top-level orchestrator and
scheduler. When COMPSs needs to execute a task in a particular cluster, it delegates
the further scheduling and execution of the task to that cluster, by sending the task to
execute as a Kubernetes resource - e.g., a pod, or a Knative Service request []. For
a scheduling decision, COMPSs considers the free resource capacities of the entire
cluster.

A second common strategy that was considered for scheduler cooperation is
partitioning. The cluster’s resource pool is split into partitions, and each partition is
governed by a separate scheduler. In that case, the task is sent by COMPSs to the
partition that it controls, so the task may assume any form that fits the design of the
COMPSs execution. For a scheduling decision, COMPSs considers the free resource
capacities only within its partition.

There are pros and cons to both strategies above. In the process of arriving at a design
decision, we consider the following key aspects:

1. Flexibility — how much work is needed to accommodate changes in the
cluster size and capacity.

2. Timing overhead — how much extra time (beyond net task execution) is
needed to get a task executed in a given cluster.

3. Resource overhead — how much extra resources (beyond what the task
requires) are needed to get a task executed in a given cluster.

4, Interference - how much may regular Kubernetes operation interfere

with the EXTRACT scheduling and execution.

Note that isolation, while being a common property of containers, is not considered.
This is because EXTRACT is not about multi-tenancy. In other words, an EXTRACT
application is assumed to be a single tenancy domain, using the architecture
exclusively for its own purposes.

23

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad date-ining softeac iatfor o

extreme data across the compute continuum

We now consider delegation in light of the above aspects. Flexibility is a clear
advantage, since the entire cluster always remains a single worker for COMPSs,
capable of executing concurrent tasks up to the cluster’s capacity, regardless of
changes. There is some limitation here, given that resources are split across multiple
nodes, but this is typically an issue at high load and can be mitigated. On the other
hand, the other aspects are disadvantages. Timing overhead: spawning tasks as pods
can be slow due to e.g., container warm-up, which can be mitigated to a degree by
cluster tuning or by using Knative Serving with minimal pool size. Similarly, container
may pose significant resource overhead beyond a task’s dependency due to mandatory
OS and platform libraries. Last, invoking operations on the Kubernetes clusters not
through COMPSs may clearly affect the free resource of the clusters, causing
interference - possible scheduling delays and/or failures.

When considering partitioning with relation to the above aspects, we see a different
picture. It clearly is more complex in terms of flexibility since the partition needs to be
redefined whenever nodes are added or removed from the cluster. One simple way of
implementing partitioning is setting up a single long-running COMPSs worker pod in
each Kubernetes node, and then sending the task to execute as a thread or a process
within that pod. Resource and timing overheads can be quite minimal in this strategy
(process or thread overhead). Last, interference is also minimal, since the worker pod
is pre-allocated with capacity, so any cluster operation affects outside the pod.

To conclude this discussion, it is now clear that partitioning is the superior strategy for
meeting EXTRACT requirements. It is therefore selected for use going forward with
EXTRACT implementation. The actual implementation is as suggested above - a single
worker pod for COMPSs in each Kubernetes node. Further services or components in
the cluster that need to be invoked as part of the task execution should also be pre-
allocated to minimize interference to a desired degree.

3.2.2. COMPSs

COMPSs is a task-based parallel computing model developed by BSC, that efficiently
schedules tasks across the entire compute continuum. COMPSs specializes in
optimizing task execution by dynamically scheduling and placing tasks based on data
locality and computing resources, thereby enhancing performance and scalability.
COMPSs was already introduced with a more detailed description in D3.1. Furthermore,
in D4.2, we provide an extensive explanation on how COMPSs is being used in a first
MVP in which it acts as the application orchestrator.

3.2.3. Nuvla

Nuvla is an edge and a container management platform built upon open-source
software and open standards. The Nuvla platform allows you to configure any number
of Container-as-a-Service (CaaS) (e.g. Docker Swarm, Kubernetes) endpoints. This
means you can mix and match public clouds, private clouds and infrastructure, as well
as edge devices.

24

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad date-ining softeac iatfor o

extreme data across the compute continuum

The Nuvla platform exposes a powerful REST API. This API allows developers to
integrate Nuvla into third-party systems, script it and even use it as Infrastructure as
code (IaC). This enables a simple and effective edge-to-multi-cloud solution. The
platform is application centric, hardware agnostic, cloud neutral and container native.
This allows end users to manage any containerized application across a fleet of edge
devices and container-orchestration engines.

In addition, Nuvla supports a data management platform that leverages the positive
attributes of S3-based services and introduces a comprehensive global management
system for metadata. The goal is to enhance the efficiency of search functionalities
across different service providers. In terms of implementation, the model consists of
three core Nuvla resources:

1. data-object: This resource acts as a proxy for data stored in an S3 bucket/object
from a specific provider. It manages the lifecycle of S3 objects, simplifying data
upload and download processes.

2. data-record: This resource allows users to add additional, user-specified
metadata for an object. Enabling the attachment of rich, domain-specific
metadata to objects enhances the precision of searching for relevant data.

3. data-set: This resource defines dynamic collections of data-object and/or data-
record resources through filters. Administrators, managers, or users can define
these collections, providing a flexible and customizable approach to data
organization.

Collectively, these resources establish a versatile data management framework
applicable to a broad range of use cases. The typical workflow involves creating a data-
object (implicitly creating the S3 object), optionally adding metadata using a data-
record object, and finally, finding and using the relevant data-object resources
included in a data set.

Nuvla facilitates the "using" element by binding data types to user applications capable
of processing the data, offering seamless integration between data management and
application utilization.

3.3. Interaction with Monitoring Platform

This section outlines how the metrics collected by Prometheus will be utilized to inform
the system and refine scheduling decisions, thereby enhancing the efficiency and
effectiveness of resource utilization across the continuum.

The array of metric candidates discussed in section 2.2 seem a very good place to start
in order to use them in the implementation of a scheduling algorithm.

However, the specific set of metrics that will be utilized falls outside of the scope of the
MVP, and as a result, the concrete set of metrics and their weights in the decision-
making will be selected during the next phase of the project. In any case, COMPSs can
leverage different schedulers at this time. Currently, the version we are using for our
preliminary tests, does not integrate in its logic the hereby presented metrics, but
rather builds on heuristics. These heuristics build a static graph, which means that no
run-time aspects are considered in order to dynamically modify the workflow
deployment.

25

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad date-ining softeac iatfor o

extreme data across the compute continuum

To that end, in Extract we want to leverage all the available information that we can
gather from the system and its resources, so that the scheduler has the ability to scale
both horizontally and vertically in a multitenant environment such as our platform’s,
meeting the most stringent application demands and striving for the most optimal
utilization and non-functional requirements (e.g. timing constraints).

As stated in Section 2.1.3, there are two approaches by which the Prometheus server
can collect metrics. COMPSs has been adapted such that an application proactively
sends (push policy) its metrics to a designated Prometheus Pushgateway at runtime
through the COMPSs framework.

Despite the availability of numerous metrics, the only one currently being sent
measures the frequency with which tasks fail to complete within their expected
execution time. This expected execution time, determined through either application-
specific profiling or dynamically during the runtime of the application, incorporates a
margin to counteract the potential temporal variability in data packet delivery across
computer networks and telecommunications systems, commonly known as jitter, as
well as variability in execution time attributable to the computational load of a task on
a specific node. Upon the COMPSs framework pushing metrics to the Pushgateway, it
becomes the Pushgateway's responsibility to make these metrics accessible over the
HTTP protocol for subsequent retrieval by the Prometheus Server in the "pull
approach."

4. Next Steps

The following chapter identifies the next steps and future improvements to what has
already been implemented.

4.1. Prometheus Service Discovery

Service discovery in Prometheus provides the capability to automatically identify and
monitor services as they dynamically appear or disappear within a system. This feature
enables Prometheus to adapt seamlessly to changes in the environment, ensuring
continuous monitoring of services. Furthermore, this feature is particularly useful in
dynamic environments such as within a Kubernetes architecture.

To solve this challenge, Prometheus supports different service discovery mechanisms,
although the most used are File-Based Service Discovery (file_sd) and HTTP Service
Discovery (http_sd). Both methods are very similar. The main difference is that with
file_sd, a simple modification of the file will notify Prometheus, while http_sd will check
changes periodically. With both methods, it will not be necessary to restart the
Prometheus server to start monitoring new services.

In addition, since the Extract platform consists of a Kubernetes architecture, there is
a specific service discovery tool, native to Kubernetes, for discovering and monitoring
new services running in a cluster. Therefore, it will be possible to also use the
Kubernetes API to discover new pods and services.

26

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad date-ining softeac iatfor o

extreme data across the compute continuum

4.2. Metric Candidates

In this section we present a set of metric candidates which could be interesting for the
project but have not been implemented yet. The following versions will discuss this list
with the partners and decide which metrics should be implemented.

CPU Quota: The CPU consumption limit for an application.

Memory Quota: The memory consumption limit for an application.

Disk space availability: Metrics regarding the available storage space.
Node/Application health: Metrics regarding the current health status of the
computing nodes and/or applications.

Application response time: Metrics regarding the response time of the
applications.

Networking dropped packages: The amount of dropped packages in
incoming and outgoing network traffic.

It should be remarked that most of these metrics can be obtained on an application
level or on a physical node level. Whenever possible, both metrics will be provided.
For example, health metrics could, on one side, reflect the current application health
state (Application up/down) and, on the other side, could reflect the current state of
the actual physical nodes available in the system (Node up/down).

There could be relations between both metrics. But it is not mandatory. For example,
a fault-tolerant application could be healthy even when there are one or more physical
nodes in an unhealthy state.

4.3. Exporter Candidates

In this section we present a set of metrics exporters which could be useful to gather
additional metrics from the Extract platform performance.

Power consumption exporter: a set of metrics to measure the power
consumption of the system. We will analyze using Scaphandre software to
collect this type of information [6].

DCGM-Exporter: an exporter dedicated to monitor the health and performance
metrics of NVIDIA GPUs resources. By integrating with Prometheus, it allows for
comprehensive monitoring and optimization of GPU usage within the Extract
platform.

The addition of these new exporters represents a significant enhancement to the
Extract platform's monitoring infrastructure.

4.4. Monitoring API

Currently, the orchestration obtains the data needed from the monitoring architecture
using the Standard API offered by Prometheus, the PromQL Query Language. While
this approach is perfectly functional, it keeps both the monitoring and orchestration
tightly bound to each other, and changing any of them requires a high degree of
modification in the other to accommodate for the change.

27

D3.2. Data-driven orchestration and monitoring (first release) EXTR gl CT
Version 1.0 Adisiutad date-ining softeac iatfor o

extreme data across the compute continuum

A loosely coupled relationship between the two will be implemented through a general
monitoring API. This will greatly reduce the work effort needed to adapt one of them
if the other gets replaced.

4.5. Scheduling algorithms

The current scheduling algorithm does not consider run-time information. Different
alternatives will be studied to improve this approach that are based on the monitoring
architecture data through the aforementioned API. Some of the alternatives that will
be considered are:

Deterministic algorithm: an algorithm in which the set of metrics to be
considered are selected, and via some weighing and priorization, a scheduling
algorithm is built.

Heuristics-based algorithm: we would like to explore how certain knowledge
of the system could be incorporated to this approach to fine-grain tune it.

Al algorithm trained with the collected metrics: by providing a large test
bench of collected metrics during different kind of applications executed in our
platform, we could explore some training models and compare the results with
some of the other approaches.

5. Conclusion

This deliverable encompasses the description of the first release of the Data-driven
orchestration and monitoring platform, developed within Work Package 3 (WP3). It
mainly covers the tasks performed in two tasks of this work package: T3.2, related to
the deployment and scheduling of workflow steps such that various goals are optimized
in a holistic manner, and T3.3, focused on the development of a monitoring
infrastructure capable of gathering information related to the execution of data mining
workflows across the compute continuum for optimized orchestration and deployment
decisions. In summary, the described development and integration of the first release
demonstrates a coherent execution of Work Package 3 objectives, paving the way for
optimized workflow deployment and monitoring capabilities as explained in the
presented sections. Section 2 introduces the monitoring platform currently under
development within the project's framework. After thoroughly analyzing which metrics
could be the most valuable to serve as input for the orchestration algorithm, the
selection of metrics that the monitoring platform will target are presented and briefly
described. Following this, an assessment of the specific requirements outlined in
document D3.1 is presented, in order to showcase that all the tools that have been
selected within this project can guarantee their fulfillment. Section 3 delves into the
planning and deployment of workflows. Initially, the orchestrator is described,
unveiling the selected components and functionalities. Following this, a comprehensive
overview of the technologies earmarked for deployment is provided. Then, the
interaction with the monitoring platform is meticulously detailed, outlining the
seamless integration between the orchestrator and the monitoring infrastructure.

28

D3.2. Data-driven orchestration and monitoring (first release) EXTR[!I\CT
Ve rs i 0 n 1 " 0 A distributed data-mining soff:vave platf?vm for

extreme data across the compute continuum

6. Acronyms and Abbreviations

- WP - Work Package
- WPL - Work Package Leader

7. References

[1]"https://prometheus.io/".
[2]"https://github.com/kubernetes/kube-state-metrics".
[3]"https://github.com/kubernetes-sigs/metrics-server".
[4]"https://opentelemetry.io/".
[5]"https://grafana.com/".
[6]"https://github.com/hubblo-org/scaphandre".

29

