

D4.1 Compute Continuum Specification

and first integration plan
Version 1.0

Documentation Information

Contract Number 101093110

Project Website www.extract-project.eu

Contractual Deadline M6, June 2023

Dissemination Level PU

Nature R

Author IKL

Contributors BIN, BSC, IBM, IKL, SIX

Reviewer SIX

Keywords Continuum, requirements, plan

The EXTRACT Project has received funding from the European Union’s
Horizon Europe programme under grant agreement number 101093110.

http://www.extract-project.eu/

 1

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

Change Log

Version Description Change

V0.1 Initial Draft

V0.2 Ready for final review

V1.0 Final review

 2

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

Table of Contents

1. Executive Summary ... 4

2. Introduction .. 5

2.1. Purpose and objectives ... 5

2.2. Relationship with other WPs ... 5

2.3. Document structure .. 5

2.4. Compute Continuum overview .. 6

3. Compute Continuum layer .. 7

3.1. Interoperability abstraction layer .. 7

3.2. HPC requirements .. 7

3.3. Cloud requirements .. 10

3.4. Edge requirements ... 11

3.4.1. Functional requirements ... 13

3.4.2. Non-functional requirements ... 14

3.5. Security requirements ... 15

3.5.1. Cybersecurity requirements .. 15

3.5.2. Data security requirements... 16

3.5.3. Security of ML models ... 17

3.6. Compute Continuum layer high level design.. 17

4. Initial Integration Plan .. 23

4.1. Processes .. 24

4.1.1. Development and Integration Process .. 24

4.1.2. Quality Assurance Process .. 26

4.1.3. Unit Testing ... 26

4.1.4. Regression Tests ... 26

4.1.5. Bug and Issue Tracking .. 27

4.2. Infrastructure .. 27

4.2.1. Development Platform: .. 27

4.2.2. Instant Messaging and Transparency.. 28

4.2.3. Integration Platform .. 28

4.2.4. Quality Assurance Tools ... 30

4.2.5. File Storage and Collaboration ... 30

4.3. Standards and Guidelines .. 31

4.3.1. Design Patterns .. 31

4.3.2. Code Comments ... 31

 3

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

4.3.3. Programming Style ... 31

5. Conclusion .. 32

6. Acronyms and Abbreviations.. 33

7. References ... 34

 4

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

1. Executive Summary
This deliverable represents the work completed in the first phase of the project within

WP4. It brings together the tasks performed in T4.1, which include defining the
requirements for the Compute Continuum and outlining the integration plan for the

EXTRACT platform, with the aim of reaching Milestone MS1.

This deliverable focuses on defining the complete Compute Continuum ecosystem,
which serves as the foundation for the EXTRACT research activities. It begins with an

analysis of the current state of art, providing an overview of the Continuum
architecture concept and examining various architectures. Special attention is given to

projects and initiatives in which EXTRACT partners have contributed.

To ensure compatibility with the use cases defined by the providers in WP1, the Cloud,
Edge and HPC requirements have been analysed. The analysis aims to identify the

requirements that have an impact on the selection of hardware platforms and
components for the Continuum architecture.

Considering these requirements, a specific set of parallel and low-power embedded
hardware architectures has been chosen for the Edge level. These architectures can

meet the performance requirements for early analytics while ensuring adherence to
non-functional properties.

At the Cloud level, this deliverable defines the Cloud architecture, components and

functionalities necessary for conducting in-depth analysis on massive volumes of data.

On the other hand, High-Performance Computing (HPC) technologies are employed to

address the volume and speed characteristics. These technologies support parallel
processing capabilities, advanced acceleration features and facilitate the training and
execution of complex AI models. Such capabilities are crucial for handling data

complexity and incompleteness.

Furthermore, the cybersecurity aspects have been specified to ensure the mitigation

of data privacy and security risks across all relevant levels. This includes measures to
safeguard data integrity and protection, secure Machine Learning models, trusted
computation, and secure communication channels. The defined characteristics aim to

minimize potential vulnerabilities and ensure the overall security of the system.

Additionally, this also includes the design of a standardized high-level abstraction layer

that facilitates the deployment and efficient execution of data mining workflows across
the entire Compute Continuum. This layer will leverage and improve existing
programming paradigms, execution models and virtualisation techniques employed in

Edge, Cloud and High-Performance Computing (HPC), enabling seamless
interoperability for processing diverse data with distinct attributes.

The document concludes by presenting an initial proposal for the integration plan of
the EXTRACT platform, with a specific focus on closely monitoring the progress and
advancements from WP2 to WP4. This integration plan serves as a framework for

overseeing the implementation of the platform and ensuring alignment with the
research activities conducted in these work packages.

The initial milestone of task T4.1 has been accomplished successfully, with all its
objectives met, as documented in this deliverable.

 5

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

2. Introduction
The primary objective of the EXTRACT project is to explore innovative and

comprehensive approaches that facilitate the development, deployment, and efficient
execution of data mining workflows across a diverse, secure, and energy-efficient

Compute Continuum. This initiative aims to address the unique challenges posed by
extreme data characteristics. In this document, we will outline the overall
requirements of the Continuum architecture that will be executed in one of the

following environments: the Cloud, the Edge or the High-Performance Computing
(HPC) systems.

2.1. Purpose and objectives
The objective of this document is to provide a description of the Compute Continuum
architecture, encompassing Edge, Cloud and HPC components, which will serve as the

foundation for the EXTRACT research.

Objectives:

1) Determine the selection of parallel and energy-efficient hardware architectures
intended for utilization on the Edge and HPC sides.

2) Establish the EXTRACT Continuum framework, incorporating an interoperability

abstraction layer while prioritizing data security in its management.

2.2. Relationship with other WPs
Deliverable Task Relation

D1.1 T1.1 Description of the use-cases and the requirements.

D2.1 T2.1 Requirements of the data infrastructure and data mining

framework.

D3.1 T3.1 Data-driven orchestration requirements.

Table 1. Relationship with other WPs

2.3. Document structure
This document is organized in 5 sections:

• Section 1 is the executive summary of the document.
• Section 2 introduces the document, gives a main view of the structure of the

document and describes the context giving a general overview of the Compute
Continuum.

• Section 3 lists the requirements that influence the definition of both the

hardware platform and the components of the Continuum architecture, including
the security considerations.

• Section 4 details the integration process, incorporating the explanation of key
aspects that will be followed throughout the project’s execution.

• Section 5 provides an overview of the conclusions derived from this document.

 6

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

The document concludes by listing the acronyms, abbreviations and bibliography
references.

2.4. Compute Continuum overview
In today’s interconnected world, the Internet plays a vital role in people’s lives. With

the increasing accessibility to computers and smartphones, more and more people
have become connected to the Internet. Simultaneously, devices have become capable
of autonomously connecting to the Internet without human intervention, giving rise to

the Internet of Things (IoT). This interconnectedness has led to the development of
the Compute Continuum, which encompasses a range of computing devices and

technologies.

The Compute Continuum is a concept that recognizes the diverse computing
capabilities and resources available, spanning from Edge devices to Cloud

infrastructure. It arises from the evolving needs of our interconnected world, where
the hierarchical connection of objects has given rise to the IoT. As IoT devices have

progressively gained computational power, the concept of the Compute Continuum
has emerged to address the different computing requirements and challenges.

At one end of the Compute Continuum, we have Edge devices such as sensors,

wearables and small computing devices. These Edge devices possess limited
processing power and storage capacity but can perform basic computations locally.

They are often found in scenarios where low latency and immediate response are
crucial, such as real-time decision systems, patient monitoring or smart buildings.

On the other end of the Continuum, we have the Cloud infrastructure, which provides

scalable and on-demand access to vast computing resources. Cloud Computing offers
the ability to process and analyse large volumes of data, leveraging powerful data

centres. It enables resource-intensive tasks and provides storage capabilities that are
not feasible on Edge devices alone.

Between the Edge devices and the Cloud, various intermediate points exist along the
Compute Continuum. These include gateways, Edge computing, Hybrid Cloud and
High-Performance Computing. Gateways act as intermediaries between Edge devices

and IoT devices, performing data aggregation and pre-processing tasks. Edge
Computing extends the capabilities of Edge devices by utilizing intermediate devices

like switches, routers and workstations to perform computations closer to the Edge.
Hybrid Cloud integrates both public and private Cloud infrastructure, providing
flexibility and control over sensitive data. HPC systems offer high computational

performance for demanding workloads, while emerging technologies like Quantum
Computing are also part of the Compute Continuum.

The Compute Continuum has evolved in response to several key needs.

1. Efficient Data Processing: The growing volume of highly heterogeneous data
from diverse sources needs efficient data processing methods that can handle

large amounts of data effectively and efficiently.

2. Real-Time Decision-Making and Time-Sensitive Applications:
Applications such as IoT deployments and autonomous systems require real-
time decision-making, capabilities to analyse and respond to data promptly. The

Compute Continuum is particularly valuable for time-sensitive application that

 7

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

require immediate action, enabling faster response times and reducing reliance
on centralized Cloud processing.

3. Reduced Latency and Bandwidth Constraints: By leveraging Edge
Computing within the Compute Continuum, organizations can minimize latency

and bandwidth limitations by processing data closer to its source, resulting in
improved response times, reduced network congestion and overall optimization
of resources’ usage.

4. Scalability and Resource Utilization: The Compute Continuum allows for

fluid resource allocation and sharing across different platforms, enabling
organizations to optimize the utilization of Edge devices, Cloud infrastructure
and HPC systems, leading to improved scalability and operational efficiency.

5. Interoperability and Integration: Smooth data and computation flow

between Edge, Cloud and HPC systems are essential. The Compute Continuum
ensures interoperability and integration, facilitating seamless workflows and
efficient collaboration.

6. Security and Privacy: Strong security measures are crucial to protect

sensitive data throughout the computing ecosystem. The Compute Continuum
emphasizes the implementation of security measures at each level to ensure

cybersecure computations at all levels and sources, as well as data’s privacy,
integrity and confidentiality.

These needs drive the development and adoption of the Compute Continuum
architecture, addressing the evolving requirements of modern computing

environments.

3. Compute Continuum layer

3.1. Interoperability abstraction layer
The interoperability abstraction layer is designed from the early stages of the EXTRACT
project to ensure the efficient exchange of data and services between Edge, Cloud and

HPC. Therefore, the design needs to include principles of flexibility, scalability and
adaptability to fit the needs of the Continuum.

It provides a standardised interface for deploying workflows, supports resource
orchestration and dynamic provisioning, and integrates with various orchestration

frameworks and resources. It is therefore necessary to establish a list of requirements
for the nodes involved to match the desired level of abstraction.

It is important that these requirements are compatible with those from D3.1.

3.2. HPC requirements

High volume and speed characteristics are effectively addressed by the use of High-

Performance Computing (HPC) technologies, which support massive parallel
processing capabilities and advanced acceleration features (e.g., GPU, FPGA, many-

 8

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

core fabrics, AI-cores), making HPC a key component of the compute continuum in
EXTRACT. However, standalone HPC systems are not suitable for: (i) real-time

operations and geographically disperse data sources, due to the potentially large
communication latencies and single-point resource contention; (ii) energy-efficient

solutions; (iii) extreme large-stored volumes. The dispersity of data enforces an
interoperable system and data processing at the edge as well. The following are
requirements applicable to HPC in the context of EXTRACT:

1) Processing power: the first obvious requirement for the HPC is that it should
have sufficient processing power to handle the large datasets generated by the
two use cases. Depending on the size and complexity of the datasets, this may

require high-performance CPUs, GPUs, or other specialized hardware.

While HPC systems are designed to provide high processing power, in EXTRACT

it is important to focus on parallelization to ensure that computing resources
are efficiently used. Parallel programming models, such as OpenMP [1] and
CUDA [2], are well-suited for EXTRACTing performance from HPC systems, but

they may not be optimized for data-intensive applications. To that end, we can
leverage programming models and frameworks such as MapReduce, Apache

SPARK or COMPSs, further described below.

To enhance the parallelization process for data-intensive applications, it is
necessary to incorporate data-awareness into the parallel programming models.

This involves identifying when data is ready for execution and allocating
resources accordingly using data flow analysis. By doing so, the parallel
programming models can ensure optimal resource allocation and help to

EXTRACT maximum performance from the HPC system.

In addition to performance benefits, parallel programming models can also
improve programmability, portability, and scalability. By hiding the complexity

of the underlying platform, these models can ease the development of software
for HPC systems and port software across different platforms. They can also be

designed to scale effectively across multiple nodes, allowing for even greater
performance gains on large-scale systems.

One parallel programming model that can be used to enhance data-intensive

applications on HPC systems is COMPSs [3]. COMPSs is a programming model
that incorporates data-awareness into its parallelization process, allowing for

optimized resource allocation and improved performance. Specifically, COMPSs
uses a data-driven approach to parallelism, in which the data dependencies of
an application are analysed to determine how to allocate resources and schedule

tasks. This allows for the efficient use of the HPC resources and can help in
avoiding resource contention and other performance issues.

In addition to data-awareness, COMPSs is designed to be highly portable,

allowing it to be used on a wide range of platforms. It is also highly scalable,
allowing it to effectively utilize resources across multiple nodes. Finally, COMPSs

provides a high degree of programmability since it supports multiple
programming languages, making it easy to develop and maintain the software
that uses it.

 9

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

2) Network bandwidth: The HPC system should be connected to the edge and
cloud components of the compute continuum with a high-bandwidth and low-

latency data stream. Specifically, the data stream should be capable of fast
transfer of large datasets and results between the different components. This is

particularly important when dealing with data-intensive applications such as the
collection of data in Venice to generate a personalized escape route in case of
an emergency. To ensure efficient data transfer, the data should be pre-

processed and filtered at the edge device to reduce the amount of data that
needs to be transferred, so that large amounts of data do not cause a bottleneck

if the network bandwidth is not sufficient.

To address this, the HPC system should be connected to the edge and cloud
components of the compute continuum with a high-bandwidth and low-latency

data stream. This can be achieved with high-speed networking technologies,
which are designed to provide high-bandwidth and low-latency interconnects

between HPC nodes. In addition, the network should be designed to be fault-
tolerant and resilient, to ensure that data transfer can continue even in the
event of a network failure or any other issue.

3) Security: The HPC, as well the entire Compute Continuum architecture and its
elements, must adhere to strict security requirements to ensure the
confidentiality, integrity, and availability of the data and applications. This

includes measures for example to prevent unauthorized access, ensure secure
communication, protect against malicious attacks, and generally advised

cybersecurity practices (e.g., ISO27k, OWASP, NIST). Such preventive
measures are quite standard and well-studied in classical computing
environments but require additional considerations in the context of HPC and

Compute Continuum. Since the HPC will be processing sensitive data collected
from edge devices, it is critical to establish proper authentication and

authorization mechanisms to control access to the data, including at the
source/edge, in transit, during HPC processing, and at rest. It is also important
to implement proper (and thoroughly tested and validated) backup and disaster

recovery mechanisms to ensure that the data and applications can be quickly
restored in the event of a security breach or other unexpected event. Achieving

these requirements may require specialized policies, practices (e.g., ISO27k,
OWASP, NIST), software, protocols, cryptographic approaches, or technologies
such as homomorphism, which allows for processing of encrypted data.

4) Software: The HPC should have the necessary software tools and frameworks

installed to support the processing requirements of the two use cases, such as
any required machine learning library, data modelling frameworks, etc. This can
be achieved by leveraging container technologies such as Singularity [4], which

enhances portability at the framework level. Moreover, “software security” is an
integral part of the requirements and the architecture that includes

considerations such as ensuring integrity of the software-supply chain, the
integrity of the execution environments (e.g., docker containers), and overall

software security practice (e.g., OWASP and similar).

 10

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

3.3. Cloud requirements
Cloud computing is the crucial component of Compute Continuum platforms. Cloud

exposes various services, unlimited resources and serverless platforms that became
vital to address high workloads demands of applications during their execution phase.

Hybrid clouds became a popular approach, where customers leverage private clouds
installed on premise with public clouds that offer unlimited resources. As an example,
edge frameworks can be installed on the edge and process initial raw data that once

processed it moved to the public cloud for further processing, like Machine Learning
workloads that usually requires many powers and GPUs.

To address the cloud requirements for EXTRACT Continuum platform, we need the
following requirements:

1) A framework that can automatically provision a cluster of VMs (or connect to

the existing cluster) in the cloud to address requirements of specific workloads,
while using an optimization phase to decide on the VMs types and other

configurations like memory, CPU or GPUs and decide on specific cloud and a
region based on various strategies, like data locality. The framework should
have a capability to fast provision additional VMs if needed in the runtime. This

auto-scaling enablement is a crucial requirement to support workloads like cloud
bursting, that requires massive compute power to support spikes in data

processing.

2) A system capable to deploy a customer workload to the public or private cloud.

System should be capable of leveraging multi cloud and multi region workloads,
considering optimization strategies, like data locality, caching for frequently

accessed data, perhaps network optimizations, policies, etc.

3) A storage system. Object storage is very popular platform for persisting Big

Data and all Big Data engines can directly access data persisted in the object
storage for read and write flows. Major public cloud providers are offering object

storage with its unlimited scale, like Amazon S3 [5], IBM Cloud Object [6], and
so on. Object storage can also be installed on premise in private data centres.
In the EXTRACT Continuum we need both public object storage, like IBM Cloud

Object Storage and private object storage, like CEPH [7] (with S3 API) that is
installed on premise over K8s platforms.

4) A Container Orchestration Engine (COE) is a fundamental requirement for the

EXTRACT platform to effectively support various workloads. A COE provides the

necessary infrastructure for managing and orchestrating containers, enabling
seamless deployment, scaling, and management of containerized applications.

It allows for workload portability and flexibility by abstracting the underlying
infrastructure and providing a consistent interface for deploying applications

across different container platforms. The COE ensures that applications can be
agnostic to specific technologies such as Kubernetes (K8s), enabling them to be
deployed in a variety of environments, including public cloud, on-premise, or

edge deployments.

5) A single access point for multi cluster deployments, covering hybrid clouds, like

K8s deployed on premise and public cloud services.

 11

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

6) Monitoring is a crucial component in almost every architecture. An ability to
monitor executions, provisions, component and failures is what makes any

platform to efficiently handle Big Data workloads. EXTRACT Continuum platform
should be connected to monitoring capabilities and is required to efficiently

handle partner use cases of EXTRACT.

Based on the requirements above we decided to leverage Sky framework to be part of
EXTRACT Continuum Platform. Sky computing is the recent trend that comes to

address multi cloud workloads to achieve cost efficiency, better resource utilizations,
etc. Sky is not just multi-cloud, where application is aware of multiple cloud. Sky is a
new concept where application is cloud agnostic and Sky framework decides on its own

which clouds and regions to deploy and execute this application while optimizing costs,
latency, data locality, etc. In particular, SkyPilot [9] is a novel framework for easily

and cost effectively running ML workloads on any cloud. SkyPilot abstracts away the
cloud infra burden: launch jobs & clusters on any cloud (AWS, Azure, GCP, Lambda
Cloud, IBM, Samsung), find scarce resources across zones/regions/clouds, Queue jobs

& use cloud object stores.

Requirements above are well connected to EXTRACT use cases and other partner’s

requirements. As example requirement on object storage is crucial for TASKA use-case
as they already employ CEPH with S3, and object storage is a designated feature of

the data staging layer. The requirement on COE aligns well with the orchestration layer
(D3.1) that assumes K8s as the infrastructure, and the requirement on monitoring is
well connected to D3.1 as well.

3.4. Edge requirements
These requirements specifications outline the key functional and non-functional

requirements for EXTRACT focused on edge device and user application management.
The functional requirements emphasize the need for seamless device provisioning,

centralized monitoring and control, application lifecycle management, secure over-the-
air updates, and advanced analytics and insights. These requirements ensure efficient
onboarding, real-time visibility, end-to-end application management, secure updates,

and data-driven decision-making capabilities. In addition, the non-functional
requirements address the runtime aspects of the edge devices and user applications.

Performance and scalability requirements ensure fast execution of user applications
and the ability to handle increasing workloads. Reliability and availability
considerations focus on minimizing downtime and ensuring continuous operation, even

in the face of device failures or network disruptions. Resource efficiency requirements
emphasize optimal resource utilization, and platform compatibility requirements

ensure seamless integration across heterogeneous environments.

The below requirements are based on the premise that users package their

applications as Docker/OCI containers to run under Container Orchestration Engine
(COE) on the edge devices. The following outlines the elements of the edge
management system that provides the runtime and management capabilities for

execution of the user-defined applications at the edge:

• SaaS/PaaS for edge device and application management (Edge SaaS)

• Edge device and application management Agent (Edge Agent)
• Container Orchestration Engine (COE)

 12

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

• Container Runtime (CR)
• Operation System (OS)

• Edge device hardware (edge HW)

 13

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

3.4.1. Functional requirements

1. Seamless Device Provisioning: The provided solution should support

automated and simplified onboarding of edge devices into the system. This

includes streamlined device registration, authentication, and configuration

processes to ensure quick and hassle-free integration with the edge

computing infrastructure.

2. Centralized Monitoring and Control: The provided solution should enable

centralized monitoring and control of edge devices and user applications. It

should provide real-time visibility into the status, health, and performance of

connected edge devices, allowing operators and application developers to

proactively identify and resolve issues.

3. Application Lifecycle Management: The provided solution should support

end-to-end management of user applications deployed on edge devices. This

includes features such as application deployment, version control, scaling, and

updates.

4. Secure Over-the-Air Updates of Edge Devices: The solution should

provide secure mechanisms for performing over-the-air updates to the edge

device. This ensures that devices are running the latest software versions with

patches and bug fixes, while minimizing downtime and operational

disruptions. The edge management solution must provide (elements of) edge

device management functionalities, like edge device halt, reboot, OS, COE,

and CR upgrade and configuration.

5. Rich web-GUI: The provided solution must provide edge operators,

application developers and users with rich web-GUI for edge device and

application management.

6. Telemetry collection: The system should provide collection of the edge

device and applications telemetry to the centralized storage. The collection of

the telemetry must be done in a PUSH mode from the edge devices to the

storage. A secure communication channel is assumed.

7. Analytics and Insights: The solution should offer analytics and insights for

edge devices and user applications. It should provide data-driven visibility into

device performance, resource utilization, and application behavior.

8. COE-enhanced Edge Devices: The system should provide edge devices with

COE running on them.

9. Support for Various COE at the Edge: Edge application management

functionality of the provided system must be extendable to support various

COE implementations.

10.Edge device OS supporting selected Container Runtime: Selected OS on

the edge device must support Container Runtime of the selected COE.

 14

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

11.Remote orchestration and management of fleets of independent edge

devices: The system must allow for remote orchestration and management

of fleets of independent edge devices and provisioning and lifecycle managing

user applications. This assumes the ability of the system to hold the inventory

of the edge devices not clustered on COE level neither among themselves nor

with the system management platform.

12.Remote orchestration and management of the COE clusters at the

edge: The system must allow for remote orchestration and management of

COE clusters at the edge and deployment and lifecycle management of user

application workloads on them.

13.Cross-edge device application service discovery: There must be a

possibility for service discovery between user applications running on different

edge devices under the supervision of the different not clustered COEs.

14.Edge device and workload management on edge devices behind NAT.

Edge and application workload management system must provide complete

edge and application manageability on the edge devices running behind NAT.

This can either be achieved by running edge management agents in PULL

mode or by utilizing a managed or public VPN service (with corresponding VPN

client at the edge).

15.Application image pre-fetch in case of restricted network conditions:

The edge application management system must be able to perform the user

application deployment and upgrade in two stages: image pre-fetch and then

application rollout. In case of low throughput and/or intermittent network

availability, the edge application management must be able to pre-fetch (with

image download resume functionality) all the images user defined as part of

their application deployment definition and only then proceed with the

application deployment or upgrade.

16.Peripheral discovery. The Edge management system must be able to:
a. identify the peripherals connected to the edge device.

b. configure the edge device so as the edge applications can seamlessly
access the peripherals connected to the edge device.

3.4.2. Non-functional requirements

For the below set of the non-functional requirements the actual KPIs following the
concrete runtime requirements from the project’s Use Cases will be collected at a

later stage of the project. The selected set to of tools that constitute the edge
computing solution must be deployed and configured to fulfil the KPIs.

1. Footprint of the COE and CR at the Edge.
In case of multiple choice, the selected combination of COE and CR must have

minimal footprint.
2. Performance and Scalability.

 15

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

The edge computing solution should demonstrate high performance, with
minimal latency and response times, to ensure smooth and efficient execution

of user applications.

3. Scalable Edge Management System.

The Edge management system must be scalable to accommodate a growing
number of edge devices and user applications, without compromising
performance or stability.

The system’s infrastructure should be capable of handling increased workloads
and scaling resources dynamically to meet varying demands.

4. Reliability and Availability.

• The solution should have high reliability, ensuring that edge devices and user
applications are consistently available and operational.

• It should include mechanisms to handle device failures, network disruptions,
and other potential issues, minimizing downtime and ensuring continuous

operation.

5. Efficient Use of Resources.

• The solution should optimize resource usage, including CPU, memory, and

network bandwidth, to maximize the efficiency of edge devices and minimize
operational costs.

• The solution should employ local intelligent resource management
techniques, such as load balancing and resource allocation algorithms, to

ensure efficient utilization of available resources.

3.5. Security requirements
Below we outline the general high-level security requirements, split by their domain
of direct application to various parts and elements of the EXTRACT data, software and
infra-architecture.

3.5.1. Cybersecurity requirements

Software integrity

Ensure/enforce external/third-party supply-chain software security and SBOM

practices are followed:

1) Strong-check integrity and authenticity of ALL downloadable/cached packages,
libraries, source-code-to-be-compiled, pre-compiled-binary-code, etc.

2) Strong-check integrity and authenticity of ALL package sources (e.g., PyPI,
NPM, APT, etc.)

3) Continuous DevSecOps scan of external/third-party supply-chain for malicious
or threat embedded elements

Ensure/enforce EXTRACT own packages, modules, tools, source and binary codes

follow and implement “self-software-integrity” provisions and checks.

 16

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

Secure deployments

Ensure/enforce the deployments of each computational unit is performed in secure

manner.

Secure computations

Apply generically applicable principles from: Secure Deployments.

Resilience to software/computation attacks

Explore feasibility and possibilities to include elements (mainly software) that can
enable various modules of EXTRACT architecture to withstand software and
computational attacks (e.g., denial of service, slowloris, buffer overflows, code

injections, untrusted code execution, etc.).

Security of edge/sensors/nodes

1) Apply DevSecOps CI/CD cybersecurity scanning of nodes, including blackbox,
whitebox, graybox, pentesting and fuzzing.

2) Apply source-code/binary-code SBOM mapping and analysis of each
node/computing-environment.

3) Apply generic/classical threat and network scanning to continuously map,
assess and understand potential attack surface coming from the known/running
configurations of each edge/sensors/node’s type/instance.

Software code security quality checks

1) Periodic human code reviews (especially critical code)

2) Automated code reviews using static-analysis tools (e.g., Veracode, Checkmarx,
etc.)

Other considerations

Apply also considerations from T4.3 Cybersecurity.

3.5.2. Data security requirements

Data confidentiality

Data-in-transit:

• Ensure/check/enforce TLS 1.2+ is used on all exposed endpoints (e.g., API, web
interfaces, etc.)

• Ensure/check/enforce proper certificates and certification chains are used on
each exposed endpoint.

• Ensure/check/enforce only strong crypto ciphers are used (e.g.,

TLS_AES_128_GCM_SHA256) and no weak or downgrade ciphers are allowed.
• Apply/perform/enforce automated/periodic scans for usage of

weak/insecure/non-compliant crypto ciphers and crypto material (e.g.,
certificates, certificate chains).

Data-at-rest:

• Apply/follow/enforce best-practices such as [10].

• Apply/follow best practices such as NIST “Protection of Data at Rest” series
(e.g., [11])

 17

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

Data-in-processing:

• Apply generically applicable principles from: Data-in-transit and Data-at-rest,

Secure Computations
• Apply applicable principles from:

▪ Software integrity
▪ Secure deployments
▪ Secure computations

▪ Resilience to software/computation attacks

Data integrity

• Apply/follow/enforce best-practices such as [10] and [12].

• Ban/deprecate/fail use of weak integrity check functions (e.g., MD5, SHA1)

• Apply/perform/enforce automated/periodic scans for usage of
weak/insecure/non-compliant function use.

Secrets management

• Apply/follow/enforce best-practices such as [13], both in manual review as well
as part of automated DevSecOps tooling

• Apply/perform/enforce automated/periodic scans for “weaks and leaks”.

Other considerations

Apply considerations from task T2.4 Data Security

3.5.3. Security of ML models

Mainly apply considerations from task T2.4 Data Security

3.6. Compute Continuum layer high level design
As stated in the Compute Continuum overview, its aim is to group together

heterogeneous devices with diverse capabilities such that each task of a workflow is
executed on the best device depending on its requirements. E.g., real-time ingestion
of data in edge devices or a highly parallelizable algorithm in HPC. Kubernetes is one

of the selected technologies as part the solution to implement the Compute Continuum
layer for the EXTRACT project, especially in the Cloud and HPC.

Kubernetes is the most widely used solution for container orchestration in cloud-based
environments. It provides a highly scalable and flexible infrastructure for deploying
containerized applications, as well as automatic load balancing and service discovery,

ensuring traffic is efficiently distributed across containers and services.

However, although it is being increasingly adopted for edge and HPC, there are still

some challenges that the EXTRACT platform will have to solve. As for HPC, the nodes
should run Singularity as container runtime engine [4], instead of container or Docker,
which are the ones typically used in cloud.

As for the edge, Kubernetes is resource-intensive and requires significant
computational resources to operate and it is not optimized for this kind of

environments with high latency and low bandwidth connections. So, although it is
designed to be highly scalable, it may not be the best option for edge environments

 18

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

that require massive scale-out capabilities due to its resource requirements and
complexity.

The following are some container orchestration solutions and edge management
middlewares that have been considered for the edge devices:

• KubeFed [14]: It allows the configuration of multiple Kubernetes clusters from
a single set of APIs in a hosting cluster. However, we discarded KubeFed
because it is currently an archived project.

• K3s [15]: K3s is a lightweight distribution of Kubernetes that is designed for
edge computing and IoT (Internet of Things) use cases. It is designed to be
easy to install and operate on resource-constrained environments, and it

provides many of the core features of Kubernetes.

• OpenShift and Rancher [16] and [17]: among other reasons, both OpenShift
and Rancher are discarded as they are both commercial offerings that require
licensing and ongoing support costs.

• Kubeflow [18]: Kubeflow is a Kubernetes-based platform especially designed
for building and deploying machine learning workflows. It provides a set of tools
and libraries for building and deploying ML models. Kubeflow can be used in a
wide range of environments, including edge computing and HPC. The drawbacks

of Kubeflow in the context of EXTRACT, are that first, not all applications in the
edge are based in machine learning for which Kubeflow is optimized.

Furthermore, Kubeflow does not scale and has a high resource usage as well.

• MicroK8s [19]: MicroK8s is a lightweight, fast, and secure distribution of
Kubernetes that is designed for development, testing, and edge computing use
cases. It can be installed and operated on resource-constrained environments,

and it provides many of the core features of Kubernetes. It allows running a
complete Kubernetes environment on a single node, with features such as DNS,

ingress, and dashboard. MicroK8s is also optimized for resource-constrained
environments. However, microK8s is typically used for building and testing
Kubernetes-based applications in a local development environment, rather than

for deploying and managing applications at scale in a distributed infrastructure
such as in the use cases of EXTRACT.

• KubeEdge [20]: KubeEdge is specifically designed for edge computing
scenarios and has been developed with features that address the unique
requirements of edge environments. It extends Kubernetes by allowing nodes

to be deployed on edge devices and providing a way to manage and orchestrate
those nodes from a central location. KubeEdge uses the QUIC protocol for
communication among clusters, instead of TCP such as Kubernetes or K3s. This

is enhanced for a cloud/edge communication architecture. It also enables edge
devices to act as Kubernetes nodes and provides the ability to deploy

containerized applications and services to those nodes. This allows edge
computing workloads to be managed and orchestrated in the same way as
cloud-based workloads, using the same tools and APIs. KubeEdge also provides

additional features such as device management, edge data analytics, and
machine learning capabilities. Finally, it integrates well with other Kubernetes-

 19

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

based platforms too, providing a seamless experience across multiple
environments.

• Nuvla/NuvlaEdge [21]: Nula/NuvlaEdge is a multi-tenant edge-to-cloud
solution composed of two components: Nuvla and NulvaEdge. Nuvla is an edge
management software. It’s an open-source solution and is available as either a

stand-alone software stack for installation on premises or as a managed PaaS
via Nuvla.io. Nuvla enables users to manage their edge devices and deploy

containerised applications at the edge and cloud. Independent Edge devices and
Cloud Computing instances which are equipped with Kubernetes or Docker COE
can be onboarded and used to provision containerised applications. Nuvla

features applications marketplace and meta-data catalogue for describing user
data located at the edge and cloud. Nuvla provides users with the data discovery

capabilities and staging applications where the data is located. Nuvla features
rich user-friendly web GUI and a comprehensive RESTful API for third-party
service integration.

NuvlaEdge is an Edge framework runtime software, which transforms any device

into remotely managed Edge device. This allows the user (through Nuvla) to
connect to and monitor each edge device individually. NuvlaEdge provides

facilities for: VPN-based networking with Nuvla and users (typically operators of
edge device), MQTT-based internal messaging, application monitoring, security

and discovery of attached HW components, such as network devices, GPU
boards, etc. All edge and application management operations are available in
PUSH and PULL modes (allowing for network restricted use cases). It supports

Kubernetes and Docker (Swarm) COE.

• OKD [22]: OKD is an open-source sibling Kubernetes distribution to Red Hat
OpenShift. It is a container application platform that provides a complete
solution for deploying and managing applications in a compute continuum
environment. OKD is based on the Kubernetes container orchestration engine

and extends its capabilities with additional features and tools.

OKD offers a flexible and scalable platform for deploying containerized
applications across various deployment environments, including public and

private clouds, on-premises data centers, and edge devices. It provides a
unified and consistent experience for managing applications throughout their

lifecycle, from development to deployment and scaling.

One of the key features of OKD is its focus on developer productivity. It
provides built-in support for continuous integration and continuous delivery
(CI/CD) workflows, allowing developers to easily build, test, and deploy

applications using automated pipelines. OKD also offers a rich set of developer
tools and integrations, making it easier to develop, debug, and monitor

applications in a compute continuum.

In addition, OKD provides robust security and multi-tenancy capabilities,
allowing to enforce access controls, isolate applications, and ensure data

privacy within their compute continuum environment. It offers built-in
authentication, authorization, and encryption mechanisms to protect sensitive
data and resources.

https://sixsq.com/products-and-services/nuvla/overview
https://nuvla.io/

 20

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

In this respect, our choice was limited to the three tools: KubeEdge, OKD and
Nuvla/NuvlaEdge.

One of the key benefits of these options is their ability to operate in offline or
intermittent connectivity scenarios, which are common in edge computing
environments. These three tools provide local storage and synchronization capabilities

that allow edge nodes to continue operating even when they are disconnected from
the central manager. KubeEdge provides a distributed message bus that enables
communication between edge nodes without relying on a centralized messaging

service, reducing latency and improving resilience. All of them support Kubernetes.

However, unlike Nuvla/NuvlaEdge, KubeEdge does not support functional

requirements 4, 5, 6, 7 and 16 listed in section 3.4.1.

A set of field deployments and evaluations of KubeEdge, OKD and Nuvla/NuvlaEdge is
planned to be conducted in the forthcoming stage of the project to select the most
suitable solution or a combination of them. The experiments will be taking into account

the edge and application management capabilities, data discovery and the applications

staging to the data requirements defined in D2.1 and the usability aspects.

Kubernetes update configuration mode

In Kubernetes, as in other orchestrating technologies, the scheduling of workloads can
be handled in different ways, namely push, pull, or hybrid modes.

1) In pull mode, the Kubernetes worker nodes proactively ask (pull) the master for

new workloads, rather than waiting for the master to push workloads to them.
This can be useful in scenarios where network connectivity is limited, as the
worker nodes do not need to maintain a constant connection to the master

asking for new jobs.
2) In push mode, the Kubernetes master pushes workloads to the worker nodes

as they become available.
3) Hybrid mode is a combination of push and pull modes, where the worker nodes

periodically check in with the master for new workloads, while also receiving

workloads pushed by the master.

Each model has its strengths and drawbacks, making it the best alternative under
certain circumstances. The following table summarizes the main pros and cons of each

model:

Model Advantages Disadvantages

Push
Mode

It can be faster and more

responsive as the master node can

immediately send tasks to the

workers as they become available,

without waiting for the workers to

request them.

Push mode can reduce network

traffic, as the workers do not need

to constantly poll the master node

for new tasks.

It may not be suitable for very large-

scale deployments with a huge

number of workers, as the master

node can become overwhelmed

trying to push tasks to all the

workers.

Push mode may require a more

complex implementation, as the

master node needs to keep track of

which workers are available and

 21

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

which tasks they are working on, in

order to push tasks efficiently.

It may not be as fault tolerant as pull

mode, as there is a risk of tasks being

lost if a worker node fails before it has

completed its task.

Pull Mode Worker nodes only request tasks

when they are connected and

“free”, which can optimize

resource usage and reduce

unnecessary overhead.

Can handle worker node failures

more gracefully, as failed nodes

will stop requesting tasks and can

be replaced by new nodes.

Task scheduling can be delayed if

worker nodes do not request tasks

frequently enough or if there is a

backlog of pending tasks.

Not well-suited for real-time or

latency-sensitive workloads, as tasks

may not be executed immediately.

Requires additional configuration to

ensure that worker nodes are

properly scaled up and down to

handle changes in demand.

Hybrid
Mode

Combines the benefits of push and

pull modes, allowing for more

flexibility in job distribution.

The master node can push urgent

or time-sensitive tasks to worker

nodes, while allowing them to pull

other tasks when they have the

capacity.

Can help avoid under-utilization of

worker nodes by ensuring that

they always have tasks available to

work on.

Reduces the need for constant

communication between the

master and worker nodes, which

can help to reduce network traffic

and improve overall system

performance.

Can be more complex to set up and

manage than push or pull mode

alone.

Requires careful coordination and

planning to ensure that tasks are

distributed efficiently and that there

is no duplication or overlap.

May require additional monitoring

and troubleshooting to ensure that all

nodes are working effectively and

that tasks are being executed

correctly.

May not be the best option for all

types of applications and may require

more customization and tweaking to

work optimally in some cases.

Table 2. Comparison between models

As depicted above, choosing the hybrid mode for deployment in the compute

continuum combines the best of both worlds, striking a good balance of the benefits
of push and pull modes while minimizing their drawbacks. In hybrid mode, critical

tasks can be pushed to the workers, while the rest of the tasks can be pulled as
needed, reducing the overhead in the system, which is a suitable choice for use cases

with varying task requirements and resource utilization. This mode allows for greater
flexibility and control over the deployment of applications, as well as more efficient
utilization of resources. By choosing hybrid mode, EXTRACT can ensure that critical

 22

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

tasks are deployed efficiently and with minimal latency, while at the same time
maintaining a scalable and efficient deployment process for non-critical tasks.

When operating in pull mode (or hybrid for that matter), it is essential to have a
sufficiently high frequency at which the nodes poll for workload. The frequency of

polling depends on several factors, including the expected workload and the available
resources. If the frequency is too low, the nodes may not receive new tasks in a timely
manner, which can lead to decreased efficiency and utilization of resources, especially

if dealing with critical or real-time tasks. On the other hand, if the frequency is too
high, it can lead to unnecessary network traffic and increased overhead, which can

also affect performance. Therefore, it is important to strike a balance between the
frequency of polling and the workload requirements to ensure optimal performance
and utilization of resources. This can be achieved and tweaked by monitoring the

system's performance and adjusting the polling frequency accordingly.

Compute Continuum layer topology

Topology Description Disadvantages

Single-
cluster

Only one cluster with multiple

masters where all three types of

nodes: HPC, Cloud and Edge are

connected to the same control

plane.

Can be a problem with long-distanced

nodes (K8s does not work well

outside LAN).

HPC-
Cloud

multi-
cluster

Multi-cluster with masters

(control planes) in HPC and Cloud

and edge nodes connect to the

Cloud. Must create overlay

network among clusters.

All edge nodes would connect to the

Cloud. Good scenario to test

EdgeMesh.

HPC-
Cloud-

Edge
multi-

cluster

Multi-cluster with masters

(control planes) in HPC and Cloud

and Edge. Nodes connect to the

nearest master. Must create

overlay network among clusters.

Nodes deployed in the same

geographical area could form a

cluster.

Table 3. Compute Continuum layer topology

Compute Continuum layer overlay network

Kubernetes ensures that all pods on a single cluster can communicate with each other,
independently on the node they are running on. But when dealing with multi-cluster

architectures, an overlay network must be deployed by the administrators, so pods
among different clusters can also communicate.

The following table is a sum up of the technologies that could be a good fit for the
Compute Continuum layer of the EXTRACT project.

 23

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

Topology Description Disadvantages

Edgemesh Edge service mesh that focuses

on providing service discovery

and routing capabilities for

applications deployed on edge

devices.

Recommended by KubeEdge.

Istio Full-featured service mesh that

provides service discovery, traffic

management, security, and

observability for applications,

among others

Most popular solution in Kubernetes.

Skupper Service mesh designed to work

across multiple clusters and cloud

providers.

Table 4. Compute Continuum layer overlay network

4. Initial Integration Plan
The EXTRACT project encompasses a distributed team consisting of multiple

individuals from diverse institutions and fields of expertise. Given the varied nature of
the project's tasks, conventional frameworks like Scrum or Kanban will not be strictly

adhered to or imposed at the project level. However, each partner has the flexibility
to organize their tasks by adopting these or other suitable frameworks.

Instead, the development of the EXTRACT product will be divided into distinct phases,

wherein each phase will involve the integration of components from different work
packages. It is highly advisable for partners to start working on component integration

as early as possible, employing illustrative examples that facilitate understanding of
the interfaces between the various technologies employed in each work package.
Subsequently, the complexity of the examples or datasets can be incrementally

increased until the testing of actual use cases becomes feasible.

The subsequent section is structured as follows: Section 4.1 presents the development

and integration processes, as well as quality assurance measures for the EXTRACT
project; Section 4.2 outlines the designated infrastructure intended to facilitate
information sharing and coordination among all teams; and finally, Section 4.3 details

the established standards and guidelines designed to streamline the utilization of the
provided infrastructure.

 24

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

4.1. Processes
This section introduces two primary processes: (1) the development and integration

process, and (2) the quality assurance process. The development and integration
process aims to establish a continuous development approach that mitigates risks and

streamlines the building and releasing procedures. On the other hand, the quality
assurance process focuses on ensuring the delivery of high-quality development
outcomes. The subsequent subsections provide detailed specifications of each process,

including the corresponding activities associated with them.

4.1.1. Development and Integration Process

The EXTRACT project encompasses various components that constitute the EXTRACT

software ecosystem. These components collaborate through predefined interfaces to
deliver diverse functionalities. The software architecture integration process involves

combining all software components into a unified ecosystem, ensuring that each
component operates according to the specified functional requirements. This
integration process aims to establish a cohesive software architecture that offers the

desired functionalities.

Figure 1. Main EXTRACT platform components

The development and integration process in the EXTRACT project is divided into four

distinct phases. Figure 2 illustrates the integration process of the different components
within the EXTRACT ecosystem, considering the various phases and all components.

The integration follows a tree structure and is performed incrementally, gradually
incorporating each component into the overall ecosystem.

Phase 1 of the EXTRACT project spans the first six months and focuses on establishing
a solid foundation for the project. During this phase, the project team defines the
complete set of functional and non-functional requirements. Additionally, the

architecture between the components is designed, and a preliminary selection of the
technology stack is made. This phase also includes establishing effective

communication channels between the different components.

As Phase 1 nears completion, efforts are directed towards the development of all
deliverables, including the current document. These deliverables are scheduled to be

finalized by Milestone 1 of the project, marking an important milestone in the overall
project timeline.

 25

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

As Figure 2 depicts, Phase 2 of the EXTRACT project focuses on the development of

the different components based on the requirements defined in Phase 1. Phase 1
simply constitutes the definition of the requirements. On Phase 2, each Work Package

is treated separately, where the output of one component serves as the input for the
next component, with data or processes handled accordingly.

The Work Packages in Phase 2 include the Data Analytics and Data Mining stage, the

Figure 2. Integration phases

Data-Driven Orchestration, which encompasses analytics, and the Compute
Continuum Platform. Additionally, monitoring across the entire Continuum is

addressed.

During Phase 2, the functionalities of each component and the integrated components
are verified through the use of unit tests. By the end of this phase (Milestone 2), each

team is expected to meet the functional requirements specific to their corresponding
component.

In Phase 3 of the EXTRACT project, a similar integration process as in Phase 2 will be
repeated, but this time considering the different Work Packages as individual

components. This integration effort will require close coordination among all teams to
ensure the successful integration of all components using either a sample dataset or
an initial real use case example.

For each integration activity, a designated leader will be responsible for overseeing the
integration process. The integration will be validated through a combination of unit

tests and, if necessary, regression tests to ensure the integrity and functionality of the
integrated components.

During the 4th and final phase of the EXTRACT project, the validation of all software

components within the EXTRACT software platform will take place. The micro-

 26

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

validations conducted during the integration phases will help minimize unexpected
issues at this stage. The primary objective of this phase is to validate and verify the

entire platform, ensuring its functionality and compliance with the specified use cases.

All reported bugs and issues from previous phases will be addressed and resolved by

the end of this phase, resulting in a project that is free from known errors. This
comprehensive validation process encompasses both the individual components and
the system as a whole, ensuring the fulfilment of functional and non-functional

requirements.

4.1.2. Quality Assurance Process

The EXTRACT project emphasizes high-quality standards and places importance on

effective communication and interconnection among its distributed teams. To ensure
fault-free software and adherence to specified behaviour, several activities will be

conducted throughout the development and integration process. These activities will
occur at different stages and can be categorized as continuous or recurring. The
following section provides an overview of the quality assurance activities performed

within the EXTRACT project's development and integration process.

4.1.3. Unit Testing

During Phase 1, sample datasets provided by the use case leaders will be utilized for

unit testing purposes. These datasets, or representative subsets of them, will be used
in conjunction with unit tests to validate the implemented functionalities of each

component and the interconnections between adjacent components. Unit tests play a
crucial role in determining the correctness of individual code units, streamlining the

integration process, and facilitating future modifications.

To maintain the quality of unit tests, it is important to adhere to certain guidelines.
These guidelines include appropriately naming tests, keeping tests small and fast,

covering boundary cases, and preparing tests for code failures. Initially, unit tests will
be manually tested by the respective developers of each component. Depending on

the programming language used for a particular component, a suitable testing
framework such as JUnit (for Java) or GoogleTest (for C/C++) can be employed.

In the second stage, to ensure the effectiveness of unit testing, the tests should be

automated using a continuous integration system, as explained in the upcoming
subsections. This automation will enable the execution of the entire unit test suite

upon code check-in, ensuring that both new and existing tests run successfully.

4.1.4. Regression Tests

 During the integration process, it may be necessary to make changes to the

implementation. In such cases, regression tests play a crucial role in ensuring that the
modifications do not introduce any issues or break previously functioning components.
Regression tests involve re-running previous tests each time a modification is made,

as well as writing new tests when necessary. It is essential to maintain adequate test
coverage to effectively conduct regression testing.

To conduct effective regression testing, several strategies and good practices should
be followed. These include checking for possible side effects when fixing bugs, writing

 27

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

regression tests for each bug that is fixed, and removing redundant tests. By following
these practices, the regression testing process can provide confidence that the

modifications do not negatively impact the existing functionality of the software
ecosystem.

4.1.5. Bug and Issue Tracking

Bug and issue trackers are essential tools for managing and resolving software bugs
and issues. These applications facilitate the creation, updating, and resolution of

project issues, providing a platform for maintaining a knowledge base that contains
information to aid in issue resolution. During the integration phase of the EXTRACT
project, effective bug and issue tracking is crucial for ensuring smooth collaboration

and communication among the different teams involved in integrating each
component.

Using an issue tracker offers several advantages over real-time messaging or email-
based communication. It provides a centralized and structured approach to managing
tasks and issues, ensuring that important details are documented and easily

accessible. Issue trackers enable teams to track the status of bugs and issues, assign
responsibilities, and prioritize tasks effectively.

For the EXTRACT project, GitLab will be utilized as the chosen bug and issue tracking
platform. GitLab offers a comprehensive set of features that support efficient issue
management, enabling teams to effectively track, address, and resolve software-

related problems. By utilizing GitLab as the issue tracking tool, the project aims to
enhance collaboration, streamline issue resolution processes, and maintain a

comprehensive record of project-related tasks and discussions.

4.2. Infrastructure
This section outlines the tools and platforms identified for potential use within the
EXTRACT project. Infrastructure decisions are made based on consortium agreements

and align with common development standards, as well as the quality assurance and
integration processes described in this section.

4.2.1. Development Platform:

The development platform plays a crucial role in enabling efficient and collaborative
software development within the EXTRACT project. The following platforms have been
identified for use in the project:

Version Control System (VCS): The project will utilize Git as the version control system
for managing source code. Git provides a distributed and scalable platform for code

versioning, facilitating collaborative development and code management across
distributed teams. GitLab, a web-based Git repository manager, will be used to host
the Git repositories and provide additional collaboration features such as issue

tracking, merge requests, and code review.

Integrated Development Environment (IDE): Each development team within the

project is free to choose their preferred IDE based on their specific requirements and
expertise. Commonly used IDEs such as IntelliJ IDEA, Eclipse, Visual Studio Code, and

 28

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

PyCharm are recommended for their extensive features and compatibility with multiple
programming languages.

Collaboration and Communication Tools: To foster effective collaboration and
communication among team members, the project will leverage tools such as Slack,

Microsoft Teams, or similar platforms. These tools provide real-time messaging, file
sharing, and collaboration features that facilitate seamless communication and
coordination among distributed teams.

Build and Continuous Integration (CI) Tools: The project will utilize build and CI tools
to automate the building, testing, and integration of software components. Popular

tools like Jenkins, Travis CI, or GitLab CI/CD pipelines can be adopted to set up
automated build and integration workflows, ensuring the stability and reliability of the
software ecosystem.

The selection and configuration of the development platforms will be performed by
each team, considering their specific needs and preferences while adhering to the

overall project guidelines and standards.

4.2.2. Instant Messaging and Transparency

Effective communication and transparency are crucial in the development and

integration process, especially when working with remote teams comprising multiple
individuals. To facilitate seamless communication and promote transparency, the
EXTRACT project will utilize Slack as a team communication tool. Slack offers various

benefits that contribute to efficient collaboration and information sharing:

Centralized Communication: Slack integrates all team communications into a single

platform. It allows for the creation of channels, organized by topics, where different
users can be assigned based on the visibility required for each channel.

Integration with Web Services: Slack seamlessly integrates with other web services
such as GitHub, enabling notifications and easy access to view code check-ins.
Additionally, it supports integration with file sharing services like Dropbox and Google

Drive, facilitating efficient sharing of project-related files.

Comprehensive Search Functionality: Slack provides a powerful search feature that

allows users to search for specific content across all channels and conversations. This
functionality makes it easier to locate and retrieve relevant information, even in
situations where large volumes of communication have taken place.

Code Snippet Sharing: Slack offers the capability to share code snippets with syntax
highlighting. This feature enables team members to share code snippets for review,

feedback, or collaborative editing. Other members can download the code snippet,
view it in raw mode, or provide comments and modifications.

4.2.3. Integration Platform

This section defines the platforms that will be used for the integration of the EXTRACT
project.

Automated Build System

The integration of the EXTRACT project will involve the use of an automated build
system to streamline the build process and ensure consistency across different

 29

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

components. While the specific technology for the automated build system has not
been determined, one example is Apache Maven. Apache Maven is a project

management and comprehension tool that centralizes the building, reporting, and
documentation processes.

The primary objectives of implementing an automated build system within the
EXTRACT project are as follows:

• Ease of Build Process: The automated build system aims to simplify the build

process by providing predefined configurations and workflows, reducing the
manual effort required for building and packaging the project components.

• Uniformity: By adopting an automated build system, the EXTRACT project aims

to establish a standardized build system that ensures consistency across

different components. This helps in managing dependencies, version control,
and maintaining a cohesive project structure.

• Quality Project Information: The automated build system generates

comprehensive reports and project documentation, providing valuable insights

into the project's status, code quality, and potential issues. This information
assists in identifying areas for improvement and ensuring project quality.

• Best Practices Development: The automated build system incorporates

guidelines and best practices for development. It enforces coding standards,
performs static code analysis, and facilitates the implementation of quality
assurance measures, thereby promoting high-quality software development.

• Smooth Migration to New Features: The automated build system is designed

to support seamless migration to new features and technologies. It provides the
necessary tools and frameworks to handle changes and updates in
dependencies, libraries, and configurations, ensuring the project remains up to

date.

Continuous Integration System

To facilitate the integration and testing of software components in the EXTRACT

project, a continuous integration system will be implemented. While Jenkins is one
potential option, the specific technology has not been finalized yet. The chosen

continuous integration system will have the following key objectives:

• Continuous Building and Testing: The system will automate the building and
testing of software components on a regular basis. This ensures that any
changes made to the project are quickly integrated and tested, allowing for early

identification of integration issues and bugs. The automated process enhances
productivity and reduces manual effort.

• Monitoring External Job Executions: The system will provide monitoring
capabilities for externally-run jobs, such as cron jobs or jobs executed on
remote machines. It will collect and store the results of these jobs, enabling
developers to review them and take necessary actions. Notifications, such as

email alerts, may be utilized to keep developers informed about job statuses
and outcomes.

 30

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

4.2.4. Quality Assurance Tools

This section covers the quality assurance tools used within the EXTRACT project to
provide means to test and control code and thus system quality.

Issue Tracking Tool

The chosen tool for issue tracking in the EXTRACT project is GitLab. GitLab provides a
comprehensive platform for managing and tracking issues and feature requests. It

offers the following capabilities:

• Issue Management: GitLab allows for effective collaboration and definition of
specific business needs. It facilitates tracking effort, size, complexity, and
priority of issue resolution. By using GitLab, silos can be eliminated, and cross-

functional engagement can be enabled.

• Visualizing Work with Issue Boards: GitLab provides issue boards that
visualize the status of work across the entire lifecycle. It enables efficient

management, assignment, and tracking of workflow. Agile delivery
methodologies such as Kanban and Scrum can be effectively supported.

• Maintaining Traceability through the DevOps Pipeline: GitLab allows for
linking issues with the actual code changes needed to resolve them. It provides
visualization and tracking of the status of builds, testing, security scans, and
delivery. This helps in maintaining traceability and enables the entire team to

have a common understanding of the project's status.

4.2.5. File Storage and Collaboration

Within the EXTRACT project, we will utilize B2DROP from BSC as our file storage and
online document collaboration platform. B2DROP offers secure and reliable cloud-
based storage for research files, along with features for seamless collaboration among

project members. With B2DROP, we can securely store and organize our project
documents, share files with ease, and collaborate in real-time on documentation such

as deliverables. The platform's emphasis on data security and privacy ensures that our
files are protected and accessible only to authorized individuals, meeting the strict
standards required for research data management. By leveraging the capabilities of

B2DROP, we can enhance our file storage, sharing, and collaboration processes,
facilitating efficient and productive collaboration within the EXTRACT project.

 31

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

4.3. Standards and Guidelines
Standards and guidelines play a crucial role in ensuring consistent and standardized

coding practices, particularly in a distributed software development project where
teams are located in different geographical locations. By adhering to these guidelines,

the EXTRACT project aims to promote cohesion, improve collaboration, and maintain
code quality throughout the development process.

4.3.1. Design Patterns

Within EXTRACT, developers will use design patterns when applicable. Design patterns
are time-tested solutions to recurring design problems and offer several benefits:

1) Provide solution to issues in software development using a proven solution.

2) Design patterns make communication between designers more efficient.
3) Facilitate program comprehension.

4.3.2. Code Comments

Code comments help to explain and describe the actions of a certain block of code,
describing behaviours that cannot otherwise be clearly expressed in the source

language and easing comprehension. EXTRACT developers will comment crucial parts
in the source code to help other developers understand their code.

Despite numerous benefits of having properly commented source code, comments can
be misguiding if not used properly. Thus a few points worth consideration while writing
comments are:

1) Comments can get out of sync with the code if people change the code
 without updating the comments. Thus, comments should always change

 together with code.
2) Good comments are hard to write and time consuming but pay off in long

 term.

3) Adding comments can be counter-productive if the information provided by
 them is not relevant to the part of code where they are provided. Hence,

 inline comments should describe the next line of code.

4.3.3. Programming Style

Programming style is a set of rules or guidelines used when writing the source code.

These guidelines include elements common to a large number of programming styles
such as the layout of the source code, including indentation, the use of white space
around operators and keywords, the capitalization of keywords and variable names,

the style and spelling of user-defined identifiers, such as function, procedure and
variable names; and the use and style of comments.

Since the EXTRACT project will include several components that are already under
development and follow their respective programming styles, developers in the frame

of the EXTRACT project will follow these styles.

 32

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

5. Conclusion
This deliverable is part of EXTRACT project´s WP4. Within this work package, the

software layer that deals with the compute continuum is defined, designed and
implemented, featuring a common abstraction to deploy and schedule data-mining

workloads. The development of cybersecurity mechanisms to ensure a secure
execution across this compute continuum is also a primary objective of this work
package. Task 4.1 focuses on the specification of requirements related to the compute

continuum, in tight collaboration with other technical work packages. In this document,
the edge-to-cloud continuum architecture is described in detail, later to define the

requirements that this platform should fulfil, divided into edge, HPC, cloud and security
requirements. Finally, an initial version of the integration plan of the EXTRACT Platform
is presented.

As documented in this deliverable, it can be stated that the objectives set for the initial
milestone of task T4.1 have been accomplished successfully. Future works in the

context of WP4 will include the definition of the programming and execution models’
interoperability, as well as the development and implementation of all the

cybersecurity functionalities that have been described in this deliverable.

 33

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

6. Acronyms and Abbreviations
- AI – Artificial Intelligence

- API – Application Programming Interface

- AWS – Amazon Web Services

- CA – Consortium Agreement

- CD – Continuous Development

- CI – Continuous Integration

- COE – Container Orchestration Engine

- CPU – Central Processing Unit

- CR – Container Runtime

- D – Deliverable

- DevOps – Development and Operations

- DevSecOps – Development, Security and Operations

- DoA – Description of Action (Annex 1 of the Grant Agreement)

- EB – Executive Board

- EC – European Commission

- FPGA – Field-Programmable Gate Array

- GA – General Assembly / Grant Agreement

- GCP – Google Cloud Platform

- GPU – Graphics Processing Unit

- GUI – Graphic User Interface

- HPC – High Performance Computing

- IDE – Integrated Development Environment

- IoT – Internet of Things

- IPR – Intellectual Property Right

- ISO – International Organization for Standardization

- KPI – Key Performance Indicator

- K3s – Lightweight Kubernetes

- K8s - Kubernetes

- LAN - Local Area Network

- M – Month

- MS – Milestones

- NAT – Network Address Translation

- NIST – National Institute of Standards and Technology

- OCI – Oracle Cloud Infrastructure

- OS – Operation System

- OWASP – Open Web Application Security Project

- PaaS – Platform as a Service

- PM – Person month / Project manager

- QUIC – Quick UDP Internet Connections

- SaaS – Software as a Service

- SHA – Secure Hash Algorithm

- T – Task

- TCP – Transmission Control Protocol

- TLS – Transport Layer Security

- UDP – User Datagram Protocol

- VCS – Version Control System

 34

D 4.1 Compute Continuum Specification and First Integration Plan

Version 1.0

- VM – Virtual Machine

- VPN – Virtual Private Network

- WP – Work Package

- WPL – Work Package Leader

7. References
[1] https://openmp.org

[2] https://developer.nvidia.com/cuda-zone

[3] http://compss.bsc.es

[4] S. Chang, et.al., "Feasibility of Running Singularity Containers with Hybrid

MPI on NASA High-End Computing Resources" CANOPIE-HPC, 2021

[5] https://aws.amazon.com/s3

[6] https://www.ibm.com/cloud/object-storage

[7] https://www.redhat.com/es/technologies/storage/ceph

[8] https://kubernetes.io/

[9] https://skypilot.readthedocs.io/en/latest/

[10] National Institute of Standards and Technology. (2021). "Data Integrity:

Identifying and Protecting Assets Via Enterprise Resilience Guidebook"

(NIST Special Publication 1800-25)

[11] https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-

program/documents/security-policies/140sp2089.pdf

[12] National Institute of Standards and Technology. (2012). "Recommendation

for Applications Using Approved Hash Algorithms" (NIST Special Publication

800-107)

[13] https://pages.nist.gov/800-63-3/sp800-63b.html

[14] https://github.com/kubernetes-retired/kubefed

[15] https://k3s.io/

[16] https://www.redhat.com/en/technologies/cloud-computing/openshift

[17] https://www.rancher.com/

[18] https://www.kubeflow.org/

[19] https://microk8s.io/

[20] https://kubeedge.io/en/

[21] https://nuvla.io

[22] https://www.okd.io/

https://openmp.org/
https://www.ibm.com/cloud/object-storage
https://www.redhat.com/es/technologies/storage/ceph
https://kubernetes.io/
https://skypilot.readthedocs.io/en/latest/
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp2089.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp2089.pdf
https://pages.nist.gov/800-63-3/sp800-63b.html
https://github.com/kubernetes-retired/kubefed
https://k3s.io/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.rancher.com/
https://www.kubeflow.org/
https://microk8s.io/
https://kubeedge.io/en/
https://nuvla.io/
https://www.okd.io/

