

D3.1 Data-driven orchestration

requirements
Version 1.0

Documentation Information

Contract Number 101093110

Project Website www.extract-project.eu

Contractual

Deadline

M6, June 2023

Dissemination Level Public

Nature Report

Author IKL

Contributors BSC, IBM, IKL, SIX

Reviewer BSC

Keywords Data, orchestration, mining, parallel, programming model

The EXTRACT Project has received funding from the European Union’s

Horizon Europe programme under grant agreement number 101093110.

http://www.extract-project.eu/

 1

D3.1 Data-Driven Orchestration Requirements

Version 1.0

Change Log

Version Description Change

V0.1 Initial draft of the table of contents

V0.2 Deployment scheduling requirements and COMPSs

V0.3 Introduction and monitoring requirements

V0.4 Added Ray for specific ML/BD tasks, comment, restructured some

text

V1.0 Internal Review, BSC

 2

D3.1 Data-Driven Orchestration Requirements

Version 1.0

Table of Contents

1. Introduction .. 3

1.1 Relationship with other WPs ... 4

1.2 Document structure .. 4

2. High level view of the scheduling, deployment and monitoring architecture 4

3. Deployment scheduling requirements ... 7

3.1. General Requirements of the scheduling subsystem .. 7

3.2. Analysis of feasible technologies to be used ... 9

3.3. Selection of open-source technologies ... 10

3.3.1. Introduction to COMPSs .. 10

3.3.2. Introduction to Ray .. 14

4. Monitoring requirements .. 16

4.1. Monitoring components .. 17

4.2. Metrics requirements .. 18

4.3. Metrics collection methods and protocols ... 20

4.4. Interoperability .. 20

4.5. Interaction with scheduler / orchestrator .. 21

5. Deployment mechanisms .. 22

5.1. Deployment requirements .. 22

5.2. Integration with the scheduling system ... 23

5.3. Integration with interoperability abstraction layer .. 25

6. Conclusions ... 26

7. Acronyms and Abbreviations .. 27

 3

D3.1 Data-Driven Orchestration Requirements

Version 1.0

1. Introduction
This deliverable represents the contributions made for the first stage of the project in

Work Package 3 (WP3). It encompasses the tasks undertaken in T3.1, which involved

establishing the requirements of the orchestrator and monitoring system for the

EXTRACT platform, ultimately aiming to achieve Milestone MS1.

This deliverable mainly focuses on the definition of a data driven orchestration

structure and how to integrate it inside EXTRACT project, which forms the fundamental

basis for the research activities conducted within EXTRACT, shaping the projects goals

and methodologies. It starts with an in-depth analysis of the current state of the art,

offering an overview of the main concepts to be considered of a scheduling,

deployment and monitoring architecture and exploring various of its approaches.

 The following four key points aim to contribute to the specification of an efficient and

effective monitoring infrastructure for the data driven orchestrator while utilizing

selected open-source orchestration technologies. This infrastructure will be capable of

collecting data pertaining to the execution of the data mining workflow throughout the

compute continuum, enabling optimized orchestration and deployment decisions.

 Deployment scheduling requirements based on workflow and continuum

definition.

 Selection of monitoring requirements. Highlighting the interoperability aspect

between monitoring frameworks in various execution environments where

workflows can be deployed, the objective is to develop mechanisms for

monitoring the edge, cloud, and high-performance computing (HPC)

environments.

 Selection of deployment and redeployment mechanisms provided by Nuvla.

Extensions related to smart policy placement and workflow considering data

location heuristics.

 Integration of security and privacy mechanisms to prevent information leaks

that could compromise the data-mining workflow or the continuum

infrastructure.

This document aims to provide a specification and description of a scheduling,

deployment and monitoring architecture and its workflow inside an Edge-to-Cloud

Continuum and extreme data scenario. The established objectives around which the

entire WP specification will be executed are described in the following lines:

1. With the objective of obtaining the most accurate and relevant computing

resources develop data-driven deployment and scheduling methods across

compute continuum, considering the necessities of the data processes and

analytics methods, and fulfilling the extreme data characteristics, security and

energy requirements.

2. With the objective of effectively monitor the execution of data-mining

workflows, develop a monitoring infrastructure for the data driven orchestrator

capable of gathering information related to the execution and focusing on

 4

D3.1 Data-Driven Orchestration Requirements

Version 1.0

aspects as latency, available resources, performance, security and energy

consumption.

1.1 Relationship with other WPs

Table 1: Relationship with other WPs

1.2 Document structure
This document is organized in following sections:

 Section 1 comprises a concise summary of the document, giving a main view of

the structure of the document and its contents.
 Section 2 describes the context, giving a general overview of a data driven

monitoring infrastructure within a dynamic Edge-to-Cloud integration and an

extreme and high-volume data context.

 Section 3 lists the functional deployment and scheduling requirements, including
the analysis and selection of the open-source technologies to be used in this

work package.

 Section 4 details the monitoring requirements and their components.
 Section 5 describes deployments mechanisms and their integration with the

scheduling system, adding functionalities to implement smart policy placement

mechanisms, and an interoperability abstraction layer.

 Section 6 provides an overview of the conclusions derived from this document.

The document concludes by listing the acronyms and abbreviations.

2. High level view of the scheduling,

deployment and monitoring architecture

In all the components of the Compute Continuum, that is the edge, the cloud or HPC,

the deployment and scheduling of applications will be managed by an orchestrator.

The orchestrator will be responsible for managing the deployment of applications,

Deliverable Task Relation

D1.1 T1.1
D1.1 describes the use-cases and their functional and non-
functional requirements.

D2.1 T2.1
Technical requirements of the data infrastructure and data

the mining framework.

D4.1 T4.1
D4.1 describes the Compute Continuum and its
requirements.

 5

D3.1 Data-Driven Orchestration Requirements

Version 1.0

including scaling up and down, and scheduling tasks on available resources. In

addition, it will also be responsible for monitoring the state of the applications and the

resources they are using in order to replicate or revive pods in case anything were to

happen. To do so, it will need to take into account the available resources, including

CPU, memory, and storage, as well as any additional constraints imposed on these

resources, such as a given factor of utilization or time-based constraints. Additionally,

some devices may have limited storage capacity, which could impact the ability to

deploy certain applications. Similarly, some devices may have limited processing

power or memory, which could impact the performance of certain applications.

In addition to resource constraints, the orchestrator will also need to consider the

requirements of the applications being deployed. This could include factors such as the

type of application, the amount of data being processed, and the expected execution

time. By considering these factors, the orchestrator can ensure that applications are

deployed in a way that meets their specific requirements.

To ensure optimal performance, the orchestrator will also need to consider factors

such as network latency and bandwidth too. This will be particularly important in those

cases where data needs to be transferred between the edge and the cloud or the HPC

components of the compute continuum. By minimizing network latency and

maximizing bandwidth, the orchestrator can help to ensure that data is transferred

quickly and efficiently.

It is important to remark that in EXTRACT, the orchestration will be formed by two

different entities. We will have an orchestrator at application-level and a platform-level

orchestrator. In Section 3.3 of this document, we focus on the application-level

orchestrator, whereas platform-level orchestration technologies are further described

in Deliverable D4.1.

To enhance parallelism, a parallel programming model or analytics framework will be

used. This will enable the development of applications that can be executed in parallel

across multiple devices, allowing for faster and more efficient processing. This

analytics framework will be responsible for describing how a certain application or task

can exploit its parallel activities, by defining what functions can be executed in parallel

by different resources while managing data dependencies at the same time. This

programming model can be seen as the application-level orchestrator, as it will define

how a task can optimally be executed in a distributed environment. The actual

deployment of the resulting application described by the parallel programming model

will be done by the platform-level orchestrator, which will see the described analytics

as one more task to deploy, managing the scheduling and execution of all tasks across

the available resources accordingly.

The platform-level orchestrator might only expose a subset of the available resources

to the programming model. The rationale for doing so, is that not all the clusters or

nodes of the entire continuum might be suitable for a given task. The criteria will be

based on 3 factors:

 6

D3.1 Data-Driven Orchestration Requirements

Version 1.0

1. Data location: especially in the case of data-intensive tasks, the location of

where the data is stored will be taken into account to potentially minimize data

transfers from distant clusters and hence minimize unnecessary latencies.

2. Nature of the task: certain tasks might need specific hardware for an optimal

execution. An example would be a cluster/node with GPUs for a ML application.

3. Environment: information about the utilization of clusters/nodes will be used to

take better scheduling and deployment decisions. This information will be

gathered by the monitoring system.

The nodes will communicate with each other through a local network infrastructure,

such as Ethernet or Wi-Fi, depending on the specific deployment in the edge and its

most convenient topology. The communication can be facilitated by a master node

that manages the edge nodes and orchestrates the communication between them,

which can be located in the edge itself or in the cloud or HPC, especially if the

bandwidth between the cloud or HPC clusters and the edge allows so. A multi-cluster

overlay network will be responsible for managing the communication between the edge

nodes and the cloud or HPC resources, as further detailed in D4.1. The edge devices

and cloud service endpoints within the edge-to-cloud continuum often exist in diverse

network domains. This includes restricted domains where devices and equipment are

not readily available for remote access, such as those behind NAT or within LTE/5G

RAN networks. To address these scenarios, the deployment and lifecycle management

of applications in restricted edge networks require the capability to pull workload

deployment and management tasks from the platform orchestrator's control plane. At

a high level, the deployment and scheduling in the edge will be designed to maximize

the utilization of resources and minimize latency, while also ensuring that the

applications are deployed in a way that meets their requirements and provides the

necessary level of performance.

The EXTRACT project focuses on addressing the compute continuum by integrating

Cloud Computing and Internet of Things. This integration encompasses various entities

and resources at different levels, including data centers, cloud computing

infrastructures, HPCs, edge devices, networks, and on-premise devices. To effectively

coordinate and manage the diverse resources and entities within the compute

continuum ecosystem, it is necessary to specify and deploy an advanced monitoring

system.

The monitoring system developed during the EXTRACT project will manage the

collection, processing, storage, and reporting of the status and operation of each

resource or entity within the compute continuum. The gathered data will be processed

and transmitted to the compute continuum orchestrator.

The monitoring system is a key outcome of the EXTRACT project and will significantly

enhance the management and orchestration within the compute continuum.

Orchestration enables the coordination and management of different resources,

technologies, and services across various stages. By facilitating improved and

optimized orchestration, the monitoring system ensures efficient and effective

operation within the computing ecosystem.

 7

D3.1 Data-Driven Orchestration Requirements

Version 1.0

The monitoring system consists of several components at various levels of the compute

continuum: Data Collection, Data Storage, Data Transport, Data Processing,

Visualization and Alerting. These components will be implemented using state-of-the-

art technologies in accordance with the monitoring component's requirements and

metrics.

The monitoring platform will offer near real-time monitoring of the system, providing

scalable, efficient, flexible, and extensible mechanisms for monitoring. It will persist

historical data related to monitored metrics, which can be accessed through APIs or

hooks to seamlessly integrate with the orchestrator and any EXTRACT application that

has permissions to access them. Additionally, the monitoring platform will prioritize

reliability, security, and compliance of the data and system. In terms of metrics, the

monitoring platform will focus on two areas: (a) nodes and infrastructure within the

compute continuum, and (b) deployed applications and systems. The monitoring

platform will integrate with the compute continuum ecosystem and it will be designed

and developed with interoperability and integration on mind.

Section 4 provides a more detailed description of the requirements, metrics and

interoperability of the monitoring system to be developed in the EXTRACT project.

3. Deployment scheduling requirements

3.1. General Requirements of the scheduling

subsystem

EXTRACT addresses a so-called compute continuum, that is, a distributed computing

paradigm that spans multiple computing domains, such as edge devices, cloud

infrastructure, and high-performance computing (HPC) resources. By leveraging the

strengths of each computing domain, a compute continuum can deliver high-

performance computing capabilities to a wide range of applications, from data

processing and analysis to real-time critical tasks, and to machine learning and

artificial intelligence. The main challenge in building a compute continuum is to ensure

that data and processing resources are seamlessly integrated and can communicate

with each other efficiently and securely. Furthermore, that processing units are

effectively used aiming at optimal performance. To guarantee that, the following are

general requirements which the deployment should count on:

 Scalability: Applications deployed in an Edge-Cloud-HPC environment need to

be able to scale up/down or in/out dynamically based on changing demands.

This requires a flexible and scalable infrastructure that can handle spikes in

traffic and workload without a significant loss in performance or effect on other

functional and non-functional requirements. Automated resource reduction such

as scale-in/down and auto-deletion is required for releasing resources from each

application to others. Also, for public cloud or other pay-per-use infrastructures,

releasing resources helps reduce operating costs.

 8

D3.1 Data-Driven Orchestration Requirements

Version 1.0

 Resilience: Applications must be designed to withstand failures and disruptions

that may occur in the compute continuum. This requires redundancy, fault

tolerance, and disaster recovery mechanisms that can ensure high availability

and data integrity.

 Security: Security is a critical requirement in any EXTRACT application or use

case where sensible data may be collected at the edge. Applications must be

designed to protect against cyber-attacks and data breaches, and must include

measures such as encryption, access control, and identity management to

ensure data confidentiality, integrity and availability. For orchestration and

scheduling, this implies secure communication between the orchestrator /

scheduler and the workers.

 Interoperability: Given that different applications across the compute

continuum might use different technology stacks, they must be able to

interoperate with each other and with the rest of the systems in the

environment. This requires adherence to uniform APIs and protocols, as well as

the use of middleware and integration technologies that can facilitate data

exchange and communication between different components. This is a key

requirement especially when selecting what technology to use at each layer and

possibly different implementations at distinct locations (edge/cloud/HPC).

 Performance: both use cases addressed in EXTRACT must be able to deliver

high performance and low latency to meet the potential real-time demands. This

requires not only optimization of the application code, which falls outside of the

scope of EXTRACT, but the use of efficient data processing technologies and

performance-enhancing computation too. High volume and speed

characteristics are effectively addressed by the use of High-Performance

Computing technologies, which support massive parallel processing capabilities

and advanced acceleration features (e.g., GPU, FPGA, many-core fabrics or AI-

cores). However, HPC systems are not suitable for: (1) real-time operations and

geographically disperse data sources, due to the potentially large

communication latencies and single-point resource contention; (2) energy-

efficient solutions; (3) extreme large-stored volumes. The dispersity of data

enforces an interoperable system and data processing at the edge as well.

 Monitoring and Management: Finally, applications must be designed to

enable effective monitoring and management on both the edge, the cloud and

the HPC. The outcome of this monitoring activity can be fed back to take better

orchestration and scheduling decisions, as well as help users identify and

troubleshoot application issues and allow applications themselves to operate

based on metrics. This requires the use of tools and technologies such as log

analysis, performance monitoring, and automated alerting to ensure that issues

are identified and addressed in a timely manner.

 9

D3.1 Data-Driven Orchestration Requirements

Version 1.0

3.2. Analysis of feasible technologies to be used

As already stated, the programming model will be the responsible component to

describe the analytics and how a certain application should be optimally executed, for

instance exploiting its parallel capabilities. At a later stage, these analytics will be used

by the platform orchestrator to actually deploy tasks into the most suitable resources.

As parallel programming models, these are some open-source options that came into

consideration:

 Message Passing Interface (MPI): MPI is a widely used model for parallel

programming in distributed-memory systems, where multiple processors

communicate and synchronize by sending and receiving messages.

 OpenMP: a popular shared-memory parallel programming model for multi-core

and multi-processor systems that relies on compiler directives to parallelize

code.

 CUDA: a parallel programming model designed for NVIDIA GPUs that provides

a set of APIs and tools to program and optimize GPU-accelerated applications.

 OpenCL: allows for the development of cross-platform applications that can be

executed on different types of hardware, including CPUs, GPUs, and FPGAs.

 Apache Spark: a parallel programming model for large-scale data processing

that supports in-memory data processing and offers high-level APIs for building

parallel applications.

 COMPSs (COMmunity Parallel Support Service): COMPSs is a parallel

programming model and runtime system developed at BSC that enables the

development of high-performance computing applications for distributed

infrastructures. COMPSs is designed to simplify the development of parallel

applications by abstracting the complexity of distributed computing and

providing a high-level API that allows developers to express parallelism in their

applications.

 Ray: Ray is an orchestration platform for Python that enables efficient scale-out

of Python applications across multiple cores in the same node and across

multiple nodes in the same cluster. It supports an annotation-based approach,

stateless remote computation (tasks) stateful remote computation (actors), and

nested distributed invocations. Ray particularly excels in integration with most

major ML platforms such as PyTorch, TensorFlow, XGBoost etc. and offers native

support for specific domains such as RL (Reinforcement Learning) and

hyperparameter tuning.

The system takes care of the distribution of tasks and data across the computing

infrastructure. This allows developers to write parallel code that can be executed

on different distributed computing infrastructures without having to modify the

code, only adding some decorators to the functions that can be parallelized.

 10

D3.1 Data-Driven Orchestration Requirements

Version 1.0

3.3. Selection of open-source technologies

Given that we needed a parallel programming model that could handle the

heterogeneity and distributed nature of the edge environment, and after comparing

the various options described in the previous subsection, we find COMPSs and Ray to

be the most suitable programming platforms, but at different roles in EXTRACT, as

explained further below.

Both platforms offer simple programming abstractions that mask away the

complexities of distributed computing and allow for efficient resource utilization. Both

support multiple programming models such as Map/Reduce and Task-based

programming. Both can scale well and offer fault-recovery. However, they are still

considered complementary in the following aspect. COMPSs applications can execute

on a mix of distributed computing infrastructures, including clusters, grids, and clouds,

i.e., in the entire compute continuum. Ray, in contrast, is typically limited to running

at cluster scope – a group of nodes closely located together and sharing a network,

upon which Ray establishes its own application cluster. On the other hand, Ray offers

excellent proven support for (almost) all existing third-party big-data and ML platforms

to-date. For example, specifically for EXTRACT (PER use-case), Ray has native SoTA

support for RL (Reinforcement Learning), with scalable implementations of many of

the leading published algorithms.

For these reasons, we believe COMPSs is most suitable as the top-level and default

orchestration solution in EXTRACT, where all EXTRACT applications will essentially be

structured as COMPSs workflows using its API and decorators, allowing tasks to be

deployed and scheduled across the compute continuum. However, for some ML/BD

tasks in the workflow, we may consider Ray to be the appropriate platform, such that

the task may be internally defined as a Ray distributed application. This aligns well

with the SkyPilot tool being used for the compute continuum in D4.1 since that tool

automatically deploys Ray in each of the compute continuum clusters, but can add

COMPSs components (and any other components) just as well.

3.3.1. Introduction to COMPSs

COMPSs is an orchestrator and scheduler for Python workflows that will be used in

EXTRACT applications. As explained above, it offers easy distribution of Python code

across a mix of backend platforms by embedding the code with COMPSs decorators

and APIs. It can be used within container technologies that allow the implementation

of micro-service scalable solutions.

COMPSs is a framework that acts under the behavior of the master/worker

architecture, is highly scalable and can handle large-scale applications running on

multiple cores. It is also fault-tolerant, meaning that it can recover from errors and

continue executing the application with only a small payment in the cost of execution

time of the application running, only if the master node does not fail.

 11

D3.1 Data-Driven Orchestration Requirements

Version 1.0

Another advantage of COMPSs is its support for data-centric computing, which allows

the user to define workflows in terms of data dependencies rather than task

dependencies. This makes it easier to express complex data flows and ensures that

computations are executed in the correct order.

In addition, COMPSs provides a few advanced optimization techniques that can

improve the performance of applications. These include dynamic task scheduling,

which enables the runtime system to adapt to changes in the workload, and data-

aware scheduling, which optimizes the placement of data and computations to

minimize data movement.

This is possible thanks to the characterization of the workflow to be executed before

running it in the real case scenario. COMPSs captures all the metrics for each of the

tasks that are going to be executed and the data structure information where it is

executed, and it uses this information to select the best execution path that minimizes

the total workflow execution time respecting the user specifications and trying to

balance the system load. This characterization can be benefited through the data

obtained in the monitoring layer to implement better scheduling decisions. As a high

computational cost is required to find the best execution path that minimizes the total

workflow execution time, COMPSs gives us the possibility to choose different

heuristics, related to task metrics, that can lead to a good result without necessarily

being the best.

The heuristics mentioned can be divided into two different categories depending on

the task metrics:

 A category that prioritizes by considering the execution time of each of the

tasks. These heuristics are Shortest Process Time (SPT), which prioritizes tasks

with less execution time and, on the other hand, Longest Process Time (LPT),

that prioritizes tasks with longest execution time.

 A category that prioritizes by the number of successors of each of the tasks.

Those heuristics are Largest Number of Successors in Next Level (LNSNL), that

prioritizes tasks with the largest number of direct successors, and Largest

Number of Successors (LNS) which prioritizes the tasks with the largest number

of successors in the next multiple levels of depth in the graph.

The responsibility of which is the best heuristic to select for the execution of the

workflow falls on the user.

Considering the aforementioned heuristics, an overview of how COMPSs executes the

workflow by finding the best suitable execution configuration is explained below. It is

important to remark that these steps will be repeated multiple times until the workflow

is finished.

1. It takes a general view of the structure of the system where the workflow is

executed. It establishes the master/worker connections and the connection to

the specified monitoring tools.

 12

D3.1 Data-Driven Orchestration Requirements

Version 1.0

2. It starts to schedule by taking the current level of tasks (non-dependent free

tasks to compute) in the complete graph and ordering them in a priority ready

queue.

3. Once the ready queue is set, the best resources (computing node and core) for

each of the tasks in the ready queue will be selected.

4. Finally, it releases the dependencies of the next level tasks in the graph by the

tasks that have already been computed.

From the user view side, the high-level steps to effectively parallelize an application

using COMPSs are:

1. Define the application as a set of tasks: Start by defining the tasks that make

up the application, along with their dependencies and inputs/outputs.

2. Annotate the tasks with COMPSs directives, which indicate COMPSs which tasks

can be executed in parallel and which dependencies need to be satisfied before

a task can be executed.

3. Compile the application with COMPSs to generate a set of executable files (when

using compiled languages). That step can be skipped for interpreted languages.

4. Deploy the compiled application to the compute continuum.

5. Run the application and let COMPSs take care of scheduling the tasks and

managing their dependencies. As the application runs, COMPSs will monitor its

progress and resource usage.

6. Analyze the monitored results once it has finished running.

In the following code snippet, we show a sample application that uses COMPSs to

enhance parallelism:

sample_app.py

@task(returns=int)

@constraint(cpu_cores=2)

@storage("memory")

def square(x):

return x * x

@task(returns=int)

@depends(square)

def sum_list(x_list):

return sum(x_list)

if __name__ == "__main__":

 13

D3.1 Data-Driven Orchestration Requirements

Version 1.0

Declare the input data

input_data = [1, 2, 3, 4, 5]

Divide the input data into two parts

input_data_1 = input_data[:3]

input_data_2 = input_data[3:]

Invoke the square tasks for each part of the input data in parallel

result_1 = [square(x) for x in input_data_1]

result_2 = [square(x) for x in input_data_2]

Combine the results using a sum task

final_result = sum_list([result_1, result_2])

In the above example, the input data is divided into two parts and we then invoke the

square task in parallel for each part using two separate lists, result_1 and result_2.

We then use the sum_list function to combine the results of the two lists and compute

their sum.

COMPSs leverages data-awareness by means of the decorators. Some of the most
common ones are used in this code snippet:

@task(returns=...): This decorator is used to indicate that a function should be

turned into a COMPSs task. The returns argument specifies the type of the value that

the task returns. For example, returns=int indicates that the task returns an integer.

Any other data type could be used as well.

@constraint(...): This decorator is used to specify task constraints. Task constraints

are requirements that a task must satisfy in order to run on a specific resource. For

example, we can use @constraint(cpu_cores=2)to indicate that a task requires at

least two CPU cores. Other types of constraints include memory
(@constraint(memory="2G")), network (@constraint(network=True)), and disk

(@constraint(disk="10G")). This information is very useful for the scheduler to

allocate a certain job to a specific computing device.

@depends(...): This very important decorator is used to specify task dependencies.

Task dependencies indicate that a task must wait for another task to complete before

it can start. The @depends()parameter can indicate either a task ID or a specific output

parameter of another task.

The @storage decorator specifies that the task's input and output data should be

stored in memory, which again is information the EXTRACT can leverage in order to
better decide whether the data is stored in HPC, the cloud or in the edge.

 14

D3.1 Data-Driven Orchestration Requirements

Version 1.0

For a complete list of the available COMPSs decorators, please refer to https://compss-

doc.readthedocs.io/en/stable/. By using these decorators, we can specify more
complex workflows that take advantage of the parallelism and distributed computing
capabilities of COMPSs.

By running this example with COMPSs, the square tasks would be distributed across

the available processing nodes, allowing us to take advantage of the parallelism and
distributed computing capabilities of COMPSs.

3.3.2. Introduction to Ray

Ray is a framework for easy, semi-transparent scaling-out of Python applications over

many cores inside a single node and over many nodes in the same cluster. Ray

provides annotations and API for converting functions into remote tasks and classes

into remote actors. Tasks are stateless, in the sense that a task’s initial state depends

almost entirely on the values of the parameters in the function invocation that

constitutes the task. Actors are stateful, in the sense that invoked methods may use

both the invocation parameters and the object’s internal state. Distributed actors and

tasks can interachangeably invoke one another (nested invocations). In addition, Ray

supports a scalable and efficient method for global state/variables that can be used

anywhere (incl. tasks and actors) using a shared-memory key-value store in each node

(Plasma) that can replicate efficiently across the cluster and is used also for storing

remote invocation results.

Ray has been designed for and used in machine learning and big-data computation.

To that end, most popular Python big-data (Modin / Pandas / Numpy etc.) and machine

learning (PyTorch / TensorFlow / HuggingFace, etc.) frameworks ported onto it. A

typical deployment of Ray contains the stack shown below:

Ray Core is the basic framework that provides the task, actor and object (global

data) abstractions. Above it, Ray AIR is the basis of the 3rd-party eco-system that

contains both easy integrations with ML frameworks (Train/Serve), BD computation

(Data) and some Ray-native highly-efficient libraries for specific domains, such as

RLlib for Reinforcement Learning and Tune for hyperparameter tuning. Finally, at the

bottom, are the many backends upon which a Ray cluster can be deployed. Ray

further supports auto-scaling of its cluster on top of the current backend to

dynamically match the cluster size and operational costs with the demands of the

applications inside.

https://compss-doc.readthedocs.io/en/stable/
https://compss-doc.readthedocs.io/en/stable/

 15

D3.1 Data-Driven Orchestration Requirements

Version 1.0

Developing a Ray application can be done either by writing explicitly with a high-

level Ray API (e.g., Ray AIR), or by coding a sequential algorithm using various (incl.

non-Ray) libraries and scaling it out by adding Ray annotations and synchronization

API. Since API is a familiar method, we will briefly present here only the

annotations/synchronization method. Both methods can be seamlessly combined.

The simple application below demonstrates basic Ray sync API and annotations. It

computes a distributed Monte-Carlo estimation of Pi, with the Ray statements

marked in bold. The algorithm itself is quite straightforward – estimate Pi as a ratio

of sampled area of a circle with radius of 1 divided by the sampled area of the 2x2

square that surrounds the circle. Sampling is actually done only in the first quadrant,

so the resulting ratio is multiplied by 4 (line 33). All the sampling is completely

independent, so the algorithm can be arbitrarily parallelized. In the example below,

there are 100 billion samples divided into batches of 1 million each that can be run

concurrently. As one can expect, changing these settings can affect the global

computation time subject to resource availability.

Let us now consider the code. Ignoring the imports, the first relevant statement for

working with Ray is ray.init() at line 6, which connects the application to the Ray

cluster – either the existing cluster and if not, by creating a new one. Next, the

@ray.remote annotation (line 8) defines a function or a class as a remote task or

actor (that can run in a different process or a different node in the cluster). All type

information for transferring parameters and return values is inferred automatically

by Ray from the Python runtime, so it’s typically not required.

Invoking remote tasks and methods is done by appending the .remote attribute to

the function or methods reference, everything else remaining the same, as seen in

line 28. However, all remote invocations are asynchronous in nature, returning a

global future-like result object. To further compute based on result objects, they

need to be waited for and retrieved, which is what the ray.get() call at line 29 does.

This call can operate on a single result or a list of results. Invoking and waiting also

automatically infers the dependency order between tasks.

1 import ray

2 import random

3 import time

4 import math

5 from fractions import Fraction

6 ray.init()

7

8 @ray.remote

9 def pi4_sample(sample_count):

10 """pi4_sample runs sample_count experiments, and returns the

11 fraction of time it was inside the circle.

12 """

13 in_count = 0

 16

D3.1 Data-Driven Orchestration Requirements

Version 1.0

14 for i in range(sample_count):

15 x = random.random()

16 y = random.random()

17 if x*x + y*y <= 1:

18 in_count += 1

19 return Fraction(in_count, sample_count)

20

21 SAMPLE_COUNT = 1000 * 1000

22 FULL_SAMPLE_COUNT = 100 * 1000 * 1000 * 1000 # 100 billion samples

23 BATCHES = int(FULL_SAMPLE_COUNT / SAMPLE_COUNT)

24 print(f'Doing {BATCHES} batches')

25 start = time.time()

26 results = []

27 for _ in range(BATCHES):

28 results.append(pi4_sample.remote(sample_count = SAMPLE_COUNT))

29 output = ray.get(results)

30 end = time.time()

31 dur = end - start

32 print(f'Running {FULL_SAMPLE_COUNT} tests took {dur} seconds')

33 pi = sum(output)*4/len(output)

34 print(f'Pi estimated value: {float(pi)}')

35 print(f'Estimation error: {abs(pi-math.pi)/pi}')

There are several other useful annotations and sync APIs, such as defining resource

requirements for tasks and actors, handling fault-tolerance etc. Full detailed

documentation for all Ray components, as well as many examples, tutorials and tooling

can be found at https://docs.ray.io/en/latest/index.html.

4. Monitoring requirements
The main objective of the monitoring system is to collect, process, store, and report

information about the operation, the status and the resources of the compute

continuum and provide it to the orchestrator and other EXTRACT applications that

might use this information to enable the optimal performance, availability, scalability,

security and the management of the compute continuum and the applications.

The main requirements that the monitoring system of the EXTRACT platform needs to

meet are:

 Near real-time monitoring: the platform needs to collect and process metrics

from the EXTRACT platform in near real-time to be able to report them to the

orchestrator.

 Flexibility and extensibility: it should allow easy integration of new nodes,

components, services and protocols within the compute continuum into the

monitoring system. Therefore, it should be designed in a modular and extensible

https://docs.ray.io/en/latest/index.html

 17

D3.1 Data-Driven Orchestration Requirements

Version 1.0

way, allowing the addition of new metrics, data sources and analytical

capabilities without significant readjustments.

 Integration: it should provide APIs or hooks to integrate with the orchestrator

system for streamlined operations.

 Historical Data: it must store and retain historical metrics data for trend

analysis, intelligent capacity planning, and retrospective analysis that can be

useful for the orchestrator.

 Scalability and efficiency: the monitoring system should handle a large

number of monitoring agents and scale seamlessly with the growth of the

compute continuum. In addition, these monitoring agents should have minimal

impact on the consumed resources such as low CPU and memory overhead.

 Reliability: ensure the system is resilient to failures and can recover gracefully.

 Security and compliance: it should follow secure practices for data collection,

storage, and transport, especially when dealing with sensitive metrics.

Therefore, the monitoring system needs to comply with relevant data privacy

regulations and security standards.

4.1. Monitoring components
After defining the requirements of the monitoring system, these are the components

that it must contain to meet them:

 Data Collectors: the monitoring system must deploy monitoring agents across

the compute continuum to collect metrics. These agents or collectors should be

installable on different instances of the EXTRACT platform, on Kubernetes

nodes, pods and services. They should be capable of gathering system-level and

application-specific metrics.

 Data Storage: it should have a centralized storage system or a distributed

database to store the collected metrics. In this case, the most realistic would be

a time series database such as Prometheus or InfluxDB. However, another

solution could be a scalable storage solution such as Apache Cassandra.

 Data Transport: for sending the collected metrics from the data collectors to

the storage system it is necessary to have a messaging or streaming system.

Apache Kafka or RabbitMQ can be suitable choices for this purpose.

 Data Processing procedures: implement data processing and analytics

components to perform, aggregate, and clean the collected metrics before

storing them.

 Visualization: it would be useful to have a monitoring dashboard or

visualization tool to present the collected metrics in a user-friendly and

interactive manner. Grafana, Kibana, or custom-built dashboards can be used

for this purpose.

In Figure 1 we illustrate the architecture proposal for the monitoring system. As data

collectors, we can distinguish two types of Node daemons: Node containers daemons

 18

D3.1 Data-Driven Orchestration Requirements

Version 1.0

which oversee the containers and applications of their corresponding node, and Node

monitoring daemons which are in charge of constantly monitoring the state and the

surrounding network of the node. In this context, the Node state is defined by dynamic

properties, such as the amount of available memory or the CPU load of a node. These

daemons are responsible for collecting metrics from the nodes, which are then

transported via an API to the metrics database through the messaging system. Before

storing the metrics, they undergo processing procedures. Once the metrics are stored,

they are sent to the Orchestrator system to analyze the status of the nodes and

applications, and subsequently schedule the processes. Additionally, a monitoring

dashboard will be available to visualize the progress of the system.

Figure 1 Monitoring system architecture

4.2. Metrics requirements
In this section we are going to define the metrics requirements to be met by the

monitoring agents. First of all, it should be considered that the monitoring system

serves as a tool to provide information about the EXTRACT platform’s state to the

Orchestrator in order to schedule the applications guaranteeing the application’s

quality of service. Consequently, the metrics collected must be useful to improve the

performance of the Edge-to-Cloud continuum architecture, optimizing resource

allocation, and enabling informed decision-making.

To effectively monitor the EXTRACT platform, it is necessary to collect a variety of

metrics from Edge, Cloud, and HPC nodes, as well as the applications and services

deployed on them. The key metrics that can help improve the performance of the

Edge-to-Cloud continuum architecture, optimize resource allocation, and enable

informed decision-making are the following:

 19

D3.1 Data-Driven Orchestration Requirements

Version 1.0

Metrics related to the nodes and the infrastructure of the compute continuum:

 Available nodes: the system needs to be dynamic to adapt its deployment to

these infrastructure availability changes; therefore, it is important to monitor

the available compute nodes.

 CPU usage: Monitoring CPU usage of nodes helps in optimizing resource

allocation and identify performance bottlenecks.

 Memory usage: Tracking memory usage and availability of nodes aids in

efficient resource allocation and capacity planning.

 Network Throughput: Monitoring network traffic and throughput between

nodes helps optimize data transfer and identify network-related issues.

 Storage Utilization: Keeping track of storage usage on nodes ensures efficient

allocation and helps identify capacity constraints.

 Node Health: Metrics such as temperature, power consumption, and hardware

failures provide insights into the overall health and reliability of the nodes.

 Workload Distribution: Tracking the distribution of workloads across nodes

helps identify imbalances and optimize resource allocation.

 Resource Efficiency: Metrics like CPU and memory usage per node help

identify opportunities for resource optimization and cost savings.

Metrics related to the applications and systems deployed:

 Application Availability: Monitoring the availability of deployed applications

ensures they are accessible and functioning as expected.

 Application Response Time: Measuring the response time of applications

helps evaluate their performance and identify areas for improvement. This

metric can surface errors that should be fixed within the application layer.

 Container Metrics: Collecting container-specific metrics, such as CPU and

memory usage per container, aids in optimizing resource allocation and

performance within Kubernetes-like environments.

 Network Throughput: Monitoring sent and received data packets as well as

how much bandwidth is being used.

 Storage Utilization: Keeping track of storage usage helps ensure efficient

storage allocation and identify potential capacity constraints.

 Workload-specific Metrics: Metrics tailored to specific workloads or services

deployed on the nodes provide insights into their performance and resource

utilization.

 Service Health: Metrics related to the health and availability of services

deployed on the nodes enable proactive monitoring and timely issue resolution.

 Node Health: Monitoring node health metrics, including temperature, power

consumption, and hardware failures, ensures the reliability and stability of the

infrastructure.

 Workload Distribution: Tracking the distribution of workloads across nodes

helps identify imbalances and optimize resource allocation.

 20

D3.1 Data-Driven Orchestration Requirements

Version 1.0

 Resource Efficiency: Metrics related to resource utilization efficiency, such as

CPU and memory usage per workload or application, help identify opportunities

for optimization and cost savings.

These metrics, when collected and analyzed effectively, provide valuable insights into

the performance and resource utilization of the Compute Continuum platform. They
enable proactive monitoring, timely decision-making, and optimization of the Edge-to-

Cloud continuum architecture.

4.3. Metrics collection methods and protocols
After evaluating multiple existing open-source options for observability and metrics

collection, Prometheus and Open Telemetry have been considered as the main

alternatives. Both projects are part of the Cloud Native Computing Foundation (CNCF)

and aim to simplify how generate, collect and monitor.

Prometheus relies on the kube-state-metrics (KSM) service. This is a simple service

which uses a Go client and allows listening the Kubernetes API and generates metrics

about the state of deployed nodes, pods and services. These metrics are served as

plaintext and accessible through HTTP protocol and intended for consumption by

Prometheus or any scraper that can scrape a Prometheus client endpoint. Prometheus

has its own time series database where it stores the metrics that can later be queried

with its own query language, PromQL (Prometheus Query Language). Although this

database can handle a lot of data, it is not officially meant to be a long-term storage

solution, so data is often sent to another storage solution like Promscale or InfluxDB.

OpenTelemetry has a smaller scope. It collects metrics using a set of tools, APIs, and

SDKs to create and manage telemetry data which is sent to other systems for storage

or query. OpenTelemetry decouples the generation of signals from the operational

considerations of storage and querying. This means that collected metrics often end

up back in Prometheus or a Prometheus compatible system.

4.4. Interoperability
Currently there is a de-facto standard denominated OpenMetrics for transmitting

cloud-native metrics at scale, with support for both text representation and Protocol

Buffers. This standard begins to emerge when Prometheus becomes the default tool

for cloud-native observability and releases a metric exposition format called

Prometheus exposition format 0.0.4.

The OpenMetrics standard is a specification for the exposition and exchange of metrics

data in a standardized format. It aims to provide a common, interoperable format for

metrics collection, storage, and querying across different monitoring and observability

systems.

Key features and aspects of the OpenMetrics standard include:

 Text-based Format: OpenMetrics adopts a text-based format that is human-

readable and easy to generate, parse, and understand. It uses plain text,

specifically the line-based Text-based Exposition Format (TBEF).

 21

D3.1 Data-Driven Orchestration Requirements

Version 1.0

 Data types: OpenMetrics define various data types such as Integer, Float,

Timestamps, Strings, Label, LabelSet, MetricPoint, Exemplars, Metric and

MetricFamily.

 Metric Types and Labels: OpenMetrics supports various metric types such as

counters, gauges, histograms, and summaries. Metrics can also have labels or

tags, which provide additional context and allow for more flexible querying and

aggregation.

 Communication: OpenMetrics defines that the communication between

ingestors and exposers must be done using the HTTP protocol and can be

secured with TLS 1.2 or later.

In conclusion, Prometheus and OpenTelemetry can use OpenMetrics format for metrics

exposition. It leverages the OpenMetrics specification to gather, store, and query

metrics in a standardized and interoperable manner. This allows to seamlessly

integrate with other systems that support the OpenMetrics format, enabling easy

exchange and consumption of metrics across various monitoring and observability

tools.

4.5. Interaction with scheduler / orchestrator
In this architecture, the scheduler / orchestrator will have access to the monitoring

database through an API. This will expose a series of endpoints that allow us to know

the status and desired metrics of the different nodes and services deployed. In this

way, the scheduler / orchestrator is able to perform the following tasks:

 Resource Allocation: The scheduler is responsible for allocation and

management of available resources such as CPU, memory, storage, and

network bandwidth.

 Tasks Scheduling: Considering factors such as dependencies, priorities,

resource requirements and constraints to determine the most appropriate order

and timing for task execution. This ensures that tasks are executed in a

coordinated manner and according to desired behavior.

 Scaling and Load Balancing: The scheduler manages the scaling of resources

and load balancing across multiple nodes or applications. This helps distribute

work evenly, prevent overloading of resources, and ensures scalability as

demand fluctuates.

 Fault Tolerance and Resilience: The scheduler plays a role in ensuring fault

tolerance and resilience. It can detect failures or disruptions in nodes or services

and take appropriate actions, such as rescheduling tasks, reallocating resources

or triggering automated recovery processes. This helps maintain system

availability and minimize the impact of failures.

 22

D3.1 Data-Driven Orchestration Requirements

Version 1.0

5. Deployment mechanisms

5.1. Deployment requirements
The below requirements are based on the premise that users package their

applications as Docker/OCI containers to run under Container Orchestration Engine

(COE) on the edge devices and cloud. The following outlines the elements of the edge

and cloud management system that provides the runtime and management

capabilities for execution of the user-defined applications at the edge and cloud.

Edge application deployment and management stack:

 SaaS/PaaS with edge device and application deployment and management

functionality (Edge SaaS/PaaS)

 Edge device and application management Agent (Edge Agent)

 Container Orchestration Engine (COE)

 Container Runtime (CR)

 Operating System (OS)

 Edge device hardware (edge HW)

Cloud application deployment and management stack:

 PaaS with cloud resource provisioning and application deployment and

management functionality (Cloud PaaS)

 Container Orchestration Engine (COE)

 Container Runtime (CR)

 Operating System (OS)

 Virtual Machine running on the cloud (cloud VM)

On the level of the applications deployment and management actions, there are a lot

of commonalities between cloud and edge. Hence, it is reasonable from the

implementation point of view to combine Edge and Cloud SaaS/PaaS in a single Edge-

to-Cloud SaaS/PaaS service.

Applications as containers: The deployment management system expects user

applications packaged as Docker/OCI containers and the deployment expressed in the

DSL(s) supported by the COE(s) selected by the project. Example: COE - Kubernetes

and DSL - Kubernetes manifest.

COE on edge and cloud: Container Orchestration Engine (COE; e.g. Kubernetes,

Docker, Docker Swarm) must be running on each edge or cloud resource to be

integrated to the system for workload placement.

Pool of independent resources: The system must allow registration of independent

edge devices (running COE) and cloud endpoints to form a pool of independent

resources on which user applications can be deployed.

 23

D3.1 Data-Driven Orchestration Requirements

Version 1.0

Agent-based edge and application management: For integration of the edge

resources with the control plane, the system must provide agents running under

supervision of COE on the edge devices.

Mixed deployment model: To satisfy working with network restricted edge devices

and cloud endpoints the solution must support PULL and PUSH modes for deployment

and lifecycle management of applications.

Comprehensive set of deployment management actions: The system should

allow users to perform all application management actions like registration of the

definitions of the application, deployment, update of the container image, update of

the configuration parameters via environment variables and configuration files, get

logs of each deployed component, get load metrics of each deployed component and

termination of the deployment.

Deployment via RESTful API: The system must expose comprehensive and secure

RESTful API allowing to perform all deployment related actions from “Comprehensive

set of deployment management actions” requirement.

Deployment via web UI: The user facing interface must feature rich web GUI and

expose all application deployment functionality available via API.

Deployment history: The system must keep record of the user deployed application

(including state transitions) and allow for updates or re-deployments of it at the later

stages.

Deployment telemetry: The system must maintain a reference to the load and

performance metrics of the deployments it is managing.

5.2. Integration with the scheduling system
After matching the project requirements to the edge-to-cloud continuum

management, application workload placement and lifecycle orchestration against the

above listed tool, we think Nuvla could be a very suitable option for the project to fulfill

the function of the edge and cloud orchestrator of the EXTRACT project.

Below is the list of considered tools along with their pros and cons based on the project

requirements.

 Open Cluster Manager

o Pros

 Management of multiple remote COE clusters.

 PULL/PUSH mode (PULL via klusterlets deployed on remote edge

or cloud clusters.)

 Open Source.

o Cons

 No web GUI.

 Kubernetes only.

 24

D3.1 Data-Driven Orchestration Requirements

Version 1.0

 Doesn’t have the concept of edge device and doesn’t provide edge

device level management functionality.

 Requires wrapping of user application manifests into ad-hoc

ManifestWork for describing placement on remote clusters.

 No meta-data catalogue for workload scheduling based on data

location.

 Rancher

o Pros

 Deployed as PaaS service.

 Rich web GUI.

 Can manage Docker Swarm, but first-class support was removed.

Available as Catalog application.

 Manages remote resources as independent COE endpoints.

 Open Source.

o Cons

 No PULL mode.

 Doesn’t have the concept of edge device and doesn’t provide edge

device level management functionality.

 No meta-data catalogue for workload scheduling based on data

location.

 Nuvla

o Pros

 PULL/PUSH mode (PULL via NuvlaEdge Agent on remote edge

COE).

 Rich web GUI.

 Supports Kubernetes and Docker Swarm on the cloud.

 Supports Kubernetes, Docker, and Docker Swarm at the edge

(allowing for management of resource restricted devices).

 Provisions and lifecycle-manages Kubernetes and Docker Swarm

clusters on clouds.

 Manages remote resources as independent COE endpoints.

 Provides integrated meta-data catalogue for workload placement

based on data location.

 Provides edge device level management functionality (OS, COE).

 Open Source.

o Cons

 Learning curve

It is expected for the scheduling system to connect to the workloads placement and

management part of the orchestrator for enforcement of the deployment scheduling

decisions. The project is aiming at using Nuvla for various tasks including the process

of the orchestration of the workloads on the edge and cloud. For this purpose, Nuvla

provides RESTful API for definitions and various operations on:

 Data records and data sets

 25

D3.1 Data-Driven Orchestration Requirements

Version 1.0

 User applications

 Inventory of edge devices and cloud resources (as COE endpoints)

 Deployments of the user applications on the remote resources

 Metrics of the edge device and user applications

The above set of RESTful resources and operations on them should provide the basis

for the scheduling system first, to fulfill the initial data-based workload placement

requests using hard (predicate-based) and soft (priority-based) requirements and

which initially might be sub-optimal, and second, later on to provide reallocation

decisions for more optimal placement of the workloads.

Nuvla provides a rich set of resources describing the workload related elements along

with the corresponding actions on them that can be utilized already now by the

EXTRACT scheduling system. However, if design and implementation of the

deployments scheduling sub-system requires extra actions on the current set of

resources or completely new resources with their own set of actions, this will be

possible to add.

Nuvla is a highly modular and extensible system. If found useful, the deployment

scheduler sub-system of EXTRACT can be integrated into Nuvla and exposed through

its API.

5.3. Integration with interoperability abstraction
layer

Nuvla PaaS uses RESTful API as established by industry standard to expose its edge,

cloud, and application management functionality. The API is clear and well structured

around the edge-to-cloud continuum management domain. It uses standard CRUD for

data operations and JSON as the data format for exchange between client and server.

The Python library nuvla-api and command line client nuvla-cli are available to the

developers and users for better integration and communication with the service. This

usage of the well-established standards will facilitate the integration of the Nuvla

service with the EXTRACT components and services.

When user application deployments on edge devices are done with Nuvla, Nuvla keeps

all the state, state transitions, and operations performed on the applications. This

provides a good historical overview of the application’s lifetime. Edge device and

application utilization and load metrics are collected and stored on Nuvla as well. At

the moment, Nuvla uses custom telemetry collector implemented as part of the

NuvlaEdge agent running on the edge devices.

We envision an extension to Nuvla’s currently employed telemetry collection solution

by the introduction of the industry de-facto standards and tools described in section

Error! Reference source not found.. As part of the extension, we plan to:

 Host telemetry data storage service as part of Nuvla service

 Support deployment of the COE-level and application metrics collectors on edge

devices and cloud clusters and secure connection of them to the internal data

storage service

 26

D3.1 Data-Driven Orchestration Requirements

Version 1.0

 Expose per edge device / cloud COE endpoint collected metrics along with the

applications’ ones for visualization and consumption by other services e.g.,

deployment scheduling service.

6. Conclusions
This deliverable encompasses the initial phase of the project within Work Package 3

(WP3). It covers the tasks performed in T3.1, focused on the determination of the

prerequisites for the orchestrator and the monitoring system of the EXTRACT platform.

In short, it focuses on the definition of a data-driven orchestration structure and how

to integrate it into the project.

This deliverable details the different technologies available that the orchestrator may

use for deployment and scheduling of applications. In addition, it details the factors

that the orchestrator must consider to ensure optimal performance. That is why this

document also aims to detail monitoring requirements identifying how to collect,

process, store and communicate information with regard to performance, status, and

resources of the compute continuum and provide this information to the orchestrator.

The definitions and requirements established in this document will serve as a baseline

for the developments to be carried out in the subsequent tasks of the WP3.

 27

D3.1 Data-Driven Orchestration Requirements

Version 1.0

7. Acronyms and Abbreviations

 AI - Artificial Intelligence
 API - Application Programming Interface

 AWS - Amazon Web Services

 COMPSs - COMP Superscalar
 COE - Container Orchestration Engine

 CPU - Central Processing Unit

 CR - Container Runtime

 CSV - Comma-Separated Values
 DL - Deep Learning

 D - Deliverable

 EC - European Commission
 EXTRACT - A distributed data-mining software platform for extreme data

across the compute continuum

 GPU - Graphics Processing Unit
 GPL - General Public License

 HE - Homomorphic Encryption

 HPC - High-Performance Computing

 HTTP - Hypertext Transfer Protocol
 IoT - Internet of Things

 K8s - Kubernetes

 KPI - Key Performance Indicator
 ML - Machine Learning

 PER - Personalized Evacuation Route

 RE - Restful - Representational State Transfer
 RL - Reinforcement Learning

 S3 - Simple Storage Service

 TASKA - Transient Astrophysics with a Square Kilometre Array

 VPN - Virtual Private Network

 WP - Work Package

	1.
	1. Introduction
	1.1 Relationship with other WPs
	1.2 Document structure

	2. High level view of the scheduling, deployment and monitoring architecture
	3. Deployment scheduling requirements
	3.1. General Requirements of the scheduling subsystem
	3.2. Analysis of feasible technologies to be used
	3.3. Selection of open-source technologies
	3.3.1. Introduction to COMPSs
	3.3.2. Introduction to Ray

	4. Monitoring requirements
	4.1. Monitoring components
	4.2. Metrics requirements
	4.3. Metrics collection methods and protocols
	4.4. Interoperability
	4.5. Interaction with scheduler / orchestrator

	5. Deployment mechanisms
	5.1. Deployment requirements
	5.2. Integration with the scheduling system
	5.3. Integration with interoperability abstraction layer

	6. Conclusions
	7. Acronyms and Abbreviations

